Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) -3x2+5x=0
-x(3x-5)=0
suy ra hoặc x=0 hoặc 3x-5=0. giải ra ta có nghiệm phương trình là 0 và 3/5
2) x2+3x-2x-6=0
x(x+3)-2(x+3)=0
(x-2)(x+3)=0
suy ra hoặc x-2=0 hoặc x+3=0. giải ra ta có nghiệm là 2 và -3
3) x2+6x-x-6=0
x(x+6)-(x+6)=0
(x-1)(x+6)=0. vậy nghiệm là 1 và -6
4) x2+2x-3x-6=0
x(x+2)-3(x+2)=0
(x-3)(x+2)=0
vậy nghiệm là -2 và 3
5) x(x-6)-4(x-6)=0
(x-4)(x-6)=0. vậy nghiệm là 4 và 6
6)x(x-8)-3(x-8)=0
(x-3)(x-8)=0
suy ra nghiệm là 3 và 8
7) x2-5x-24=0
x2-8x+3x-24=0
x(x-8)+3(x-8)=0
(x+3)(x-8)=0
vậy nghiệm là -3 và 8
câu 1: -3x2 + 5x = 0
suy ra -x(3x-5)=0
sung ra x = 0 hoặc 3x-5=0 suy ra 3x = 5 suy ra x = 5/3
Answer:
\(3x^2-4x=0\)
\(\Rightarrow x\left(3x-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{4}{3}\end{cases}}\)
\(\left(x^2-5x\right)+x-5=0\)
\(\Rightarrow x\left(x-5\right)+\left(x-5\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-5=0\\x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=5\\x=-1\end{cases}}\)
\(x^2-5x+6=0\)
\(\Rightarrow x^2-2x-3x+6=0\)
\(\Rightarrow\left(x^2-2x\right)-\left(3x-6\right)=0\)
\(\Rightarrow x\left(x-2\right)-3\left(x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-2=0\\x-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=2\\x=3\end{cases}}\)
\(5x\left(x-3\right)-x+3=0\)
\(\Rightarrow5x\left(x-3\right)-\left(x-3\right)=0\)
\(\Rightarrow\left(5x-1\right)\left(x-3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}5x-1=0\\x-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{1}{5}\\x=3\end{cases}}\)
\(x^2-2x+5=0\)
\(\Rightarrow\left(x^2-2x+1\right)+4=0\)
\(\Rightarrow\left(x-1\right)^2=-4\) (Vô lý)
Vậy không có giá trị \(x\) thoả mãn
\(x^2+x-6=0\)
\(\Rightarrow x^2+3x-2x-6=0\)
\(\Rightarrow x.\left(x+3\right)-2\left(x+3\right)=0\)
\(\Rightarrow\left(x-2\right)\left(x+3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-2=0\\x+3=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\x=-3\end{cases}}}\)
a. 3x(x-2)-x+2=0
3x(x-2)-(x-2)=0
(3x-1)(x-2)=0
=>\(\hept{\begin{cases}3x-1=0\\x-2=0\end{cases}}\)
=> \(\hept{\begin{cases}3x=1\\x=2\end{cases}}\)
=>\(\hept{\begin{cases}x=\frac{1}{3}\\x=2\end{cases}}\)
vậy x thuộc (1/3;2)
a) x(x - 1) = 0
=> \(\left[\begin{array}{nghiempt}x=0\\x-1=0\end{array}\right.\)=> \(\left[\begin{array}{nghiempt}x=0\\x=1\end{array}\right.\)
b) 3x2 - 6x = 0
=> 3x.(x - 2) = 0
=> x.(x - 2) = 0
=> \(\left[\begin{array}{nghiempt}x=0\\x-2=0\end{array}\right.\)=> \(\left[\begin{array}{nghiempt}x=0\\x=2\end{array}\right.\)
c) x(x - 6) + 10(x - 6) = 0
=> (x - 6)(x + 10) = 0
=> \(\left[\begin{array}{nghiempt}x-6=0\\x+10=0\end{array}\right.\)=> \(\left[\begin{array}{nghiempt}x=6\\x=-10\end{array}\right.\)
d) x3 - x = 0
=> x.(x2 - 1) = 0
=> x.(x - 1).(x + 1) = 0
=> \(\left[\begin{array}{nghiempt}x=0\\x-1=0\\x+1=0\end{array}\right.\)=> \(\left[\begin{array}{nghiempt}x=0\\x=1\\x=-1\end{array}\right.\)
a)
\(x\left(x-1\right)=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=0\\x-1=0\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}x=0\\x=1\end{array}\right.\)
Vậy x=0 ; x =1
b)
\(3x^2-6x=0\)
\(\Rightarrow3x\left(x-2\right)=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=0\\x-2=0\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}x=0\\x=2\end{array}\right.\)
Vậy x=0 ; x =2
c)
\(x\left(x-6\right)+10\left(x-6\right)=0\)
\(\Rightarrow\left(x-6\right)\left(x+10\right)=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}x-6=0\\x+10=0\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}x=6\\x=-10\end{array}\right.\)
Vậy x=6 ; x = -10
d)
\(x^3-x=0\)
\(\Rightarrow x\left(x^2-1\right)=0\)
\(\Rightarrow x\left(x-1\right)\left(x+1\right)=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=0\\x-1=0\\x+1=0\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}x=0\\x=1\\x=-1\end{array}\right.\)
Vậy x = 0 ; x = 1 ; x= - 1
a)\(x\left(x+2\right)-3x-6=0\)
=>\(x\left(x+2\right)-3\left(x+2\right)=0\)
=>\(\left(x-3\right)\left(x+2\right)=0\)
=>\(\orbr{\begin{cases}x-3=0\\x+2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=-2\end{cases}}\)
b)\(x^3+3x^2+3x-1-3x^2-3x=0\)
=>\(x^3-1=0\)
=>x3=1
=>x=1
a) x2 - 3x - x(x + 2) = 2
=> x2 - 3x - x2 - 2x = 2
=> -5x = 2
=> x = -2/5
b) 5x3 - 3x2 + 10x - 6 = 0
=>x2(5x - 3) + 2(5x - 3) = 0
=> (x2 + 2)(5x - 3) = 0
=> \(\orbr{\begin{cases}x^2+2=0\\5x-3=0\end{cases}}\)
=> \(\orbr{\begin{cases}x^2=-2\left(ktm\right)\\5x=3\end{cases}}\)
=> x = 3/5
\(a,x^2-3x-x\cdot\left(x+2\right)=2\)
\(x^2-3x-x^2-2x=2\)
\(-5x=2\)
\(x=-\frac{2}{5}\)
\(b,5x^3-3x^2+10x-6=0\)
\(5x\cdot\left(x^2+2\right)-3\cdot\left(x^2+2\right)=0\)
\(\left(x^2+2\right)\cdot\left(5x-3\right)=0\)
\(\hept{\begin{cases}x^2+2=0\\5x-3=0\end{cases}\Rightarrow\hept{\begin{cases}x\notin\varnothing\\x=\frac{3}{5}\end{cases}}}\)
Vậy......
a) \(x^2-36=0\)
\(\Leftrightarrow x^2=36\)
\(\Leftrightarrow x=\pm\sqrt{36}=\pm6\)
b) \(\left(3x-5\right)^2-\left(x+6\right)^2=0\)
\(\Leftrightarrow\left(3x-5-x-6\right)\left(3x-5+x+6\right)=0\)
\(\Leftrightarrow\left(2x-11\right)\left(4x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{11}{2}\\x=\frac{-1}{4}\end{cases}}\)
\(x.\left(x-2\right)-6+3x=0\)
\(x.\left(x-2\right)+3x-6=0\)
\(x.\left(x-2\right)+3.\left(x-2\right)=0\)
\(\left(x+3\right).\left(x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+3=0\\x-2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-3\\x=2\end{cases}}}\)
Vậy x=-3 hay x=2
x(x-2)-6+3x=0
x(x-2)-3(2-x)=0
(x-2)(x-3)=0
<=>x-2=0=>x=2
<=>x-3=0=>x=3
vậy x{2,3}