Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{4+3x}{3}=\frac{x^2+1}{x}ĐKXĐ:x\ne0\)
\(x\left(4+3x\right)=3x^2+3\)
\(4x+3x^2=3x^2+3\)
\(4x+3x^2-3x^2-3=0\)
\(4x-3=0\)
\(4x=3\)
\(x=\frac{3}{4}\)Theo ĐKXĐ : x = 3/4 (tm)
a) ĐKXĐ: \(x\ne0\)
\(\frac{4+3x}{3}-\frac{x^2+1}{x}=0\)
\(\Leftrightarrow\frac{4x+3x^2-3x^2-3}{3x}=0\)
\(\Leftrightarrow4x-3=0\)
\(\Leftrightarrow x=\frac{3}{4}\left(TM\right)\)
b)ĐKXĐ: \(x\ne0;x\ne-1\)
\(\frac{2x}{x+1}+\frac{3\left(x-1\right)}{x}-5=0\)
\(\Leftrightarrow\frac{2x^2+3x^2-3-5x^2-5x}{x\left(x+1\right)}=0.\)
\(\Leftrightarrow5x+3=0.\)
\(\Leftrightarrow x=\frac{-3}{5}\left(TM\right)\)
Học tốt
Mình khuyên bạn thế này :
Bạn nên tách những câu hỏi ra
Như vậy các bạn sẽ dễ giúp
Và cũng có nhiều bạn giúp hơn !
Bài 1.
a) ( x - 3 )( x + 7 ) = 0
<=> x - 3 = 0 hoặc x + 7 = 0
<=> x = 3 hoặc x = -7
Vậy S = { 3 ; -7 }
b) ( x - 2 )2 + ( x - 2 )( x - 3 ) = 0
<=> ( x - 2 )( x - 2 + x - 3 ) = 0
<=> ( x - 2 )( 2x - 5 ) = 0
<=> x - 2 = 0 hoặc 2x - 5 = 0
<=> x = 2 hoặc x = 5/2
Vậy S = { 2 ; 5/2 }
c) x2 - 5x + 6 = 0
<=> x2 - 2x - 3x + 6 = 0
<=> x( x - 2 ) - 3( x - 2 ) = 0
<=> ( x - 2 )( x - 3 ) = 0
<=> x - 2 = 0 hoặc x - 3 = 0
<=> x = 2 hoặc x = 3
a.(x+2)2-x(x+2)=0
\(\Leftrightarrow\)(x+2)(x-2-x)=0
\(\Leftrightarrow\)(x+2)*2=0
\(\Leftrightarrow\)x+2=0
\(\Leftrightarrow\)x=-2
vay s={-2}
b.\(\frac{2x+7}{3}\)-\(\frac{x-2}{4}\)=2
\(\Leftrightarrow\)\(\frac{4\left(2x+7\right)}{12}\)+\(\frac{-3\left(x-2\right)}{12}\)=\(\frac{24}{12}\)
\(\Leftrightarrow\)8x+28-3x+6=24
\(\Leftrightarrow\)5x=-10
\(\Leftrightarrow\)x=-2
vay s={-2}
c.|x+5|=3x+1
neu x+5\(\ge\)0 thi |x+5|=x+5
\(\Leftrightarrow\)x\(\ge\)-5
ta co phuong trinh
x+5=3x+1
\(\Leftrightarrow\)-2x=-4
\(\Leftrightarrow\)x=2( thoa man dieu kien x\(\ge\)-5)
neu x+5<0 thi |x+5|=5-x
\(\Leftrightarrow\)x<-5
ta co phuong trinh
5-x=3x+1
\(\Leftrightarrow\)-4x=-4
\(\Leftrightarrow\)x=1 (k thoa man dieu kien x<5)
vay s={2}
chuc bn hoc tot
Ta có : |2x - 5| + |4 + x| = 0
Mà : |2x - 5| \(\ge0\forall x\)
|4 + x| \(\ge0\forall x\)
Nên \(\orbr{\begin{cases}\left|2x-5\right|=0\\\left|4+x\right|=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x-5=0\\4+x=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x=5\\x=-4\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=-4\end{cases}}\)
A) x2 - 4x + 4 = (x - 2)2 (hằng đẳng thức số 2)
Cm : x2 - 4x + 4 = x2 - 2x - 2x + 4 = x(x - 2) - 2(x - 2) = (x - 2)(x - 2) = (x - 2)2
b tương tự
x( x - 1 )( x - 2 )( x - 3 ) + 1 = 0
<=> [ x( x - 3 ) ][ ( x - 1 )( x - 2 ) ] + 1 = 0
<=> ( x2 - 3x )( x2 - 3x + 2 ) + 1 = 0
<=> ( x2 - 3x + 1 - 1 )( x2 - 3x + 1 + 1 ) + 1 = 0
<=> ( x2 - 3x + 1 )2 - 1 + 1 = 0
<=> ( x2 - 3x + 1 )2 = 0 <=> x2 - 3x + 1 = 0
Δ = b2 - 4ac = 9 - 4 = 5 > 0 nên pt có hai nghiệm phân biệt \(x_1=\frac{3+\sqrt{5}}{2};x_2=\frac{3-\sqrt{5}}{2}\)
Vậy S = { \(\frac{3\pm\sqrt{5}}{2}\)}
Dùng kiến thức lớp 9 làm gì hả Quỳnh? Đây là lớp 8 mà.
\(x\left(x-1\right)\left(x-2\right)\left(x-3\right)+1=0\).
\(\Leftrightarrow\left[x\left(x-3\right)\right]\left[\left(x-1\right)\left(x-2\right)\right]+1=0\).
\(\Leftrightarrow\left(x^2-3x\right)\left(x^2-3x+2\right)+1=0\).
Đặt \(x^2-3x+1=a\), phương trình trở thành:
\(\left(a-1\right)\left(a+1\right)+1=0\).
\(\Leftrightarrow a^2-1+1=0\).
\(\Leftrightarrow a^2=0\).
\(\Leftrightarrow a=0\).
\(\Leftrightarrow x^2-3x+1=0\).
\(\Leftrightarrow\left(x^2-2.\frac{3}{2}.x+\frac{9}{4}\right)-\frac{5}{4}=0\).
\(\Leftrightarrow\left(x-\frac{3}{2}\right)^2=\frac{5}{4}\).
\(\Leftrightarrow\orbr{\begin{cases}x-\frac{3}{2}=\frac{\sqrt{5}}{2}\\x-\frac{3}{2}=\frac{-\sqrt{5}}{2}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{3+\sqrt{5}}{2}\\x=\frac{3-\sqrt{5}}{2}\end{cases}}\).
Vậy phương trình có tập nghiệm: \(S=\left\{\frac{3\pm\sqrt{5}}{2}\right\}\).