Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(A=x^3-30x^2-31x+1\)
\(=x^3-31x^2+x^2-31x+1\)
\(=x^2\left(x-31\right)+x\left(x-31\right)+1\)
\(=\left(x^2+x\right)\left(x-31\right)+1\)
Thay x = 31 \(\Rightarrow A=1\)
Vậy A = 1 khi x = 31
b, tách ra làm tương tự phần a
a) \(\frac{x-45}{55}+\frac{x-47}{53}=\frac{x-55}{45}+\frac{x-53}{47}\)
\(\Leftrightarrow\left(\frac{x-45}{55}-1\right)+\left(\frac{x-47}{53}-1\right)=\left(\frac{x-55}{45}-1\right)+\left(\frac{x-53}{47}-1\right)\)
\(\Leftrightarrow\frac{x-100}{55}+\frac{x-100}{53}=\frac{x-100}{45}+\frac{x-100}{47}\)
\(\Leftrightarrow\frac{x-100}{55}+\frac{x-100}{53}-\frac{x-100}{45}-\frac{x-100}{47}=0\)
\(\Leftrightarrow\left(x-100\right)\left(\frac{1}{55}+\frac{1}{53}-\frac{1}{45}-\frac{1}{47}\right)=0\)
Vì \(\hept{\begin{cases}\frac{1}{55}< \frac{1}{45}\\\frac{1}{53}< \frac{1}{47}\end{cases}}\Rightarrow\frac{1}{55}+\frac{1}{53}-\frac{1}{45}-\frac{1}{47}< 0\)
\(\Rightarrow x-100=0\Rightarrow x=100\)
Vậy x = 100
\(=x^2+10x+25+y^2+2y+1\)
\(=\left(x+5\right)^2+\left(y+1\right)^2\)
<=> [ (x^2+2xy+y^2)+ 2.(x+y).5 +25 ] + (y^2+2y+1)=0
<=> (x+y+5)^2 + (y+1)^2 = 0
<=> x+y+5 = 0 và y+1 = 0
<=> x=-4 và y=-1
Ta có: x2+2y2+2xy+10x+12y+26=0
=> (x2+2xy+y2)+(10x+10y)+25+(y2+2y+1)=0
=> (x+y)2+10(x+y)+25+(y2+2y+1)=0
=> (x+y+5)2+(y+1)2=0
=> (x+y+5)2=(y+1)2=0
=> x+y+5=y+1=0
(+) y+1=0=> y=-1
(+) x+y+5=0 mà y=-1=> x-1+5=0
=> x+4=0=> x=-4
Vậy (x,y)=(-4;-1)
(x+5)^2 +1
tai x=45 thi = (45+5)^2 +1
=2501
xx + 10x + 26
Khi x = 45 Thì :
45 . 45 + 10 . 45 + 26
( 45 + 5 ) ^ 2 + 1
2501