K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2018

     \(x\left(x-1\right)-3x+x=0\)

\(\Leftrightarrow\)\(x^2-x-3x+x=0\)

\(\Leftrightarrow\)\(x\left(x-3\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x-3=0\end{cases}}\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x=3\end{cases}}\)

Vậy

16 tháng 7 2018

x=0 hoặc 3 nha

\(\left(4-3x\right)\left(10x-5\right)=0\)

\(\Rightarrow\orbr{\begin{cases}4-3x=0\\10x-5=0\end{cases}\Rightarrow\orbr{\begin{cases}3x=4\\10x=5\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{4}{3}\\x=\frac{1}{2}\end{cases}}}\)

\(\left(7-2x\right)\left(4+8x\right)=0\)

\(\Rightarrow\orbr{\begin{cases}7-2x=0\\4+8x=0\end{cases}\Rightarrow\orbr{\begin{cases}2x=7\\8x=-4\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{7}{2}\\x=-\frac{1}{2}\end{cases}}}}\)

rồi thực hiện đến hết ... 

Brainchild bé ngây thơ qus e , ko thực hiện đến hết như thế đc đâu :>

\(\left(x-3\right)\left(2x-1\right)=\left(2x-1\right)\left(2x+3\right)\)

\(2x^2-7x+3=4x^2+4x-3\)

\(2x^2-7x+3-4x^2-4x+3=0\)

\(-2x^2-11x+6=0\)

\(2x^2+11x-6=0\)

\(2x^2+12x-x-6=0\)

\(2x\left(x+6\right)-\left(x+6\right)=0\)

\(\left(x+6\right)\left(2x-1\right)=0\)

\(x+6=0\Leftrightarrow x=-6\)

\(2x-1=0\Leftrightarrow2x=1\Leftrightarrow x=\frac{1}{2}\)

\(3x-2x^2=0\)

\(x\left(2x-3\right)=0\)

\(x=0\)

\(2x-3=0\Leftrightarrow2x=3\Leftrightarrow x=\frac{3}{2}\)

Tự lm tiếp nha 

28 tháng 3 2020

a. Thay \(x_0=2\) vào phương trình, ta được:

\(2^2-3.2+7-1-2.2=8\ne0\)

\(\Rightarrow x_0=2\) không phải là nghiệm của pt

b. Thay \(x_0=-2\) vào phương trình, ta được:

\(\left(-2\right)^2-3.\left(-2\right)-10=0\)

\(\Rightarrow x_0=-2\) là nghiệm của pt

c. Thay \(x_0=2\) vào phương trình, ta được:

\(2^2-3.2+4-2.2+2=0\)

\(\Rightarrow x_0=2\) là nghiệm của pt

d. Thay \(x_0=-1\) vào phương trình, ta được:

\(\left(-1+1\right)\left(-1-2\right)\left(-1-5\right)=0\)

\(\Rightarrow x_0=-1\) là nghiệm của pt

e. Thay \(x_0=-1\) vào phương trình, ta được:

\(2.\left(-1\right)^2+3.\left(-1\right)+1=0\)

\(\Rightarrow x_0=-1\) là nghiệm của pt

f. Thay \(x_0=5\) vào phương trình, ta được:

\(4.5^2-3.5-2.5+1=76\ne0\)

\(\Rightarrow x_0=5\) không là nghiệm của pt

8 tháng 8 2016

a)

\(\Rightarrow x\left(x-5\right)=0\)

\(\Rightarrow\left[\begin{array}{nghiempt}x=0\\x-5=0\end{array}\right.\)

\(\Rightarrow\left[\begin{array}{nghiempt}x=0\\x=5\end{array}\right.\)

b)

\(\Rightarrow3x\left(x-2\right)-2\left(x-2\right)=0\)

\(\Rightarrow\left(x-2\right)\left(3x-2\right)=0\)

\(\Rightarrow\left[\begin{array}{nghiempt}x-2=0\\3x-2=0\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}x=2\\x=\frac{2}{3}\end{array}\right.\)

c)

\(\Rightarrow\left(3x-1\right)\left(5x+x-2\right)=0\)

\(\Rightarrow\left(3x-2\right)^2.2=0\)

\(\Rightarrow3x-2=0\)

\(\Rightarrow x=\frac{2}{3}\)

1 tháng 4 2020

e, 3x(2-x) =15(x-2)

\(\Leftrightarrow3x\left(2-x\right)-15\left(x-2\right)=0\)

\(\Leftrightarrow-3x\left(x-2\right)-15\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(-3x-15\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\-3x-15=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\x=5\end{matrix}\right.\)

Vậy..

f, (x+5)(x+4)=0

\(\Leftrightarrow\left\{{}\begin{matrix}x+5=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-5\\x=-4\end{matrix}\right.\)

Vậy..

g, x(x+4)=0

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)

,h, (2x -4)(x-2)=0

\(\Leftrightarrow2\left(x-2\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(2-1\right)=0\)

\(\Leftrightarrow x-2=0\Leftrightarrow x=2\)

i, (x+1/5)(2x-3)=0

\(\Leftrightarrow\left\{{}\begin{matrix}x+\frac{1}{5}=0\\2x-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\frac{-1}{5}\\x=\frac{3}{2}\end{matrix}\right.\)

k, x²-4x=0

\(\Leftrightarrow x\left(x-2\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

m, 4x²-1=0

\(\Leftrightarrow\left(2x\right)^2-1^2=0\)

\(\Leftrightarrow\left(2x-1\right)\left(2x+1\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-1=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=1\\2x=-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{1}{2}\\x=\frac{-1}{2}\end{matrix}\right.\)

n, x²-6x+9=0

\(\Leftrightarrow x^2-2.x.3+3^2=0\)

\(\Leftrightarrow\left(x-3\right)^2=0\Leftrightarrow x-3=0\)

<=> x=3

l, (3x-5)²-(x+4)²=0

\(\Leftrightarrow\left(3x-5-x-4\right)\left(3x-5+x+4\right)=0\)

\(\Leftrightarrow\left(2x-9\right)\left(4x-1\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-9=0\\4x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=9\\4x=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{9}{2}\\x=\frac{1}{4}\end{matrix}\right.\)

Vậy ..

o, 7x(x+2)-5(x+2)=0

\(\Leftrightarrow\left(x+2\right)\left(7x-5\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+2=0\\7x-5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\7x=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-2\\x=\frac{5}{7}\end{matrix}\right.\)

Vậy....

p, 3x(2x-5)-4x+10=0

\(\Leftrightarrow3x\left(2x-5\right)-\left(4x-10\right)=0\)

\(\Leftrightarrow3x\left(2x-5\right)-2\left(2x-5\right)=0\)

\(\Leftrightarrow\left(2x-5\right)\left(3x-2\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-5=0\\3x-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=5\\3x=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{5}{2}\\x=\frac{2}{3}\end{matrix}\right.\)

Vậy...

q, (2-2x)-x²+1=0

\(\Leftrightarrow2\left(1-x\right)-\left(x^2-1^2\right)=0\)

\(\Leftrightarrow2\left(1-x\right)-\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow2\left(1-x\right)+\left(1-x\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left(1-x\right)\left(2+x+1\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}1-x=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\x=-3\end{matrix}\right.\)

Vậy ....

r, x(1-3x)=5(1-3x)

\(\Leftrightarrow x\left(1-3x\right)-5\left(1-3x\right)=0\)

\(\Leftrightarrow\left(1-3x\right)\left(x-5\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}1-3x=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-3x=-1\\x=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{1}{3}\\x=5\end{matrix}\right.\)

s, 2x-3/4+x+1/6=3

\(\Leftrightarrow x-\frac{7}{12}=3\Leftrightarrow x=3+\frac{7}{12}=\frac{43}{12}\)

1 tháng 4 2020

r, x(1-3x)=5(1-3x)

➜x(1-3x)-5(1-3x)=0

➜(x-5)(1-3x)=0

\(\left[{}\begin{matrix}x-5=0\\1-3x=0\end{matrix}\right.\text{➜}\left[{}\begin{matrix}x=5\\x=\frac{1}{3}\end{matrix}\right.\)

Mk lười lắm mai nha!!!~~~~~~~~~~~~

13 tháng 6 2020

Cảm ơn diễn quỳnh

13 tháng 6 2020

Mình là diễm quỳnh chứ không phải diễn quỳnh nha bạnkhocroi

19 tháng 6 2019

\(o,x^2-9x+20=0\)

\(\Leftrightarrow x^2-4x-5x+20=0\)

\(\Leftrightarrow x\left(x-4\right)-5\left(x-4\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(x-5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-4=0\\x-5=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=4\\x=5\end{cases}}\)

19 tháng 6 2019

\(n,3x^3-3x^2-6x=0\)

\(\Leftrightarrow3x\left(x^2-x-2\right)=0\)

\(\Leftrightarrow3x\left(x^2+x-2x-2\right)=0\)

\(\Leftrightarrow3x\left[x\left(x+1\right)-2\left(x+1\right)\right]=0\)

\(\Leftrightarrow3x\left(x+1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\orbr{\begin{cases}3x=0\\x+1=0\end{cases}}\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}\orbr{\begin{cases}x=0\\x=-1\end{cases}}\\x=2\end{cases}}\)

20 tháng 4 2020

a)

\(\left(4x-10\right)\cdot\left(24+5x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}4x-10=0\\24+5x=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}4x=10\\5x=-24\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{5}{2}\\x=-\frac{24}{5}\end{matrix}\right.\)

Vậy \(S=\left\{\frac{5}{2};-\frac{24}{5}\right\}\)

b)

\(\left(2x-5\right)\left(3x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}2x-5=0\\3x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{5}{2}\\x=\frac{2}{3}\end{matrix}\right.\)

Vậy \(S=\left\{\frac{5}{2};\frac{2}{3}\right\}\)

c)

\(\left(2x-1\right)\left(3x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}2x-1=0\\3x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{2}\\x=-\frac{1}{3}\end{matrix}\right.\)

Vậy \(S=\left\{\frac{1}{2};-\frac{1}{3}\right\}\)

d)

\(x\left(2x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=\frac{1}{2}\end{matrix}\right.\)

Vậy \(S=\left\{0;\frac{1}{2}\right\}\)

e) \(\left(5x+3\right)\left(x^2+4\right)\left(x-1\right)=0\)

Do \(x^2\ge0\) Nên \(x^2+4>0\)

\(\left(5x+3\right)\left(x^2+4\right)\left(x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}5x+3=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\frac{3}{5}\\x=1\end{matrix}\right.\)

Vậy \(S=\left\{-\frac{3}{5};1\right\}\)

....... Còn lại cứ cho mỗi thừa số = 0 rồi tìm x như bình thường thôi bạn

20 tháng 4 2020

1. (4x - 10)(24 + 5x) = 0

\(\Leftrightarrow\left[{}\begin{matrix}4x-10=0\\24+5x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{5}{2}\\x=\frac{-24}{5}\end{matrix}\right.\)

Vậy S = {\(\frac{5}{2}\); \(\frac{-24}{5}\)}

2. (2x - 5)(3x - 2) = 0

\(\Leftrightarrow\left[{}\begin{matrix}2x-5=0\\3x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{5}{2}\\x=\frac{2}{3}\end{matrix}\right.\)

Vậy S = {\(\frac{5}{2}\); \(\frac{2}{3}\)}

3. (2x - 1)(3x + 1) = 0

\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\3x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{2}\\x=\frac{-1}{3}\end{matrix}\right.\)

Vậy S = {\(\frac{1}{2}\); \(\frac{-1}{3}\)}

4. x(x2 - 1) = 0

\(\Leftrightarrow\) x(x - 1)(x + 1) = 0

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-1=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)

Vậy S = {0; 1; -1}

5. (5x + 3)(x2 + 4)(x - 1) = 0

VÌ x2 + 4 > 0 với mọi x nên

\(\Rightarrow\left[{}\begin{matrix}5x+3=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-3}{5}\\x=1\end{matrix}\right.\)

Vậy S = {\(\frac{-3}{5}\); 1}

6. (x - 1)(x + 2)(x + 3) = 0

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+2=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\\x=-3\end{matrix}\right.\)

Vậy S = {1; -2; -3}

7. (x - 1)(x + 5)(-3x + 8) = 0

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+5=0\\-3x+8=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-5\\x=\frac{8}{3}\end{matrix}\right.\)

Vậy S = {1; -5; \(\frac{8}{3}\)}

Chúc bn học tốt!!

14 tháng 2 2020

\(\left(3x+1\right)^2-x^2+8x-16=0\)

\(\Leftrightarrow\left(3x+1\right)^2-\left(x-4\right)^2=0\)

\(\Leftrightarrow\left(3x+1+x-4\right)\left(3x+1-x+4\right)=0\)

\(\Leftrightarrow\left(4x-3\right)\left(2x+5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}4x-3=0\\2x+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{4}\\x=\frac{-5}{2}\end{cases}}\)

14 tháng 2 2020

\(\left(3x+1\right)^2-x^2+8x-16=0\)

\(\Leftrightarrow\left(3x+1\right)^2-\left(x^2-8x+16\right)=0\)

\(\Leftrightarrow\left(3x+1\right)^2-\left(x-4\right)^2=0\)

\(\Leftrightarrow\left(3x+1+x-4\right)\left(3x+1-x+4\right)=0\)

\(\Leftrightarrow\left(4x-3\right)\left(2x+5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}4x-3=0\\2x+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{4}\\x=\frac{-5}{2}\end{cases}}\)

16 tháng 6 2017

a)\(3x\left(x-2\right)+2\left(2-x\right)=0\)

\(\Leftrightarrow3x\left(x-2\right)-2\left(x-2\right)=0\)

\(\Leftrightarrow\left(3x-2\right)\left(x-2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}3x-2=0\\x-2=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=\frac{2}{3}\\x=2\end{cases}}\)

b)\(5x\left(3x-1\right)+x\left(3x-1\right)-2\left(3x-1\right)=0\)

\(\Leftrightarrow\left(3x-1\right)\left(5x+x-2\right)=0\)

\(\Leftrightarrow\left(3x-1\right)\left(6x-2\right)=0\)

\(\Leftrightarrow2\left(3x-1\right)\left(3x-1\right)=0\)

\(\Leftrightarrow\left(3x-1\right)^2=0\Rightarrow3x-1=0\Rightarrow x=\frac{1}{3}\)

16 tháng 6 2017

a/3x(x-2)+2(2-x)=0

=>(2-3x)(2-x)=0

=>\(\orbr{\begin{cases}2-3x=0\\2-x=0\end{cases}}\)=>\(\orbr{\begin{cases}3x=2\\x=2\end{cases}}\)=>\(\orbr{\begin{cases}x=\frac{2}{3}\\x=2\end{cases}}\)

b/5x(3x-1)+x(3x-1)-2(3x-1)=0

=>(5x+x-2)(3x-1)=0

=>(6x-2)(3x-1)=0

=>\(\orbr{\begin{cases}6x-2=0\\3x-1=0\end{cases}}\)=>\(\orbr{\begin{cases}6x=2\\3x=1\end{cases}}\)=>x=\(\frac{1}{3}\)