\(^n\)+1)(x\(^n\)-2)-x\(^{n-3}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 9 2017

Dài dữ trời :V Về sau gửi từng bài một thôi, nhìn hoa mắt quá @@

B1: Phân tích thành nhân tử:

a) \(6x^2+9x=3x\left(2x+3\right)\)

b) \(4x^2+8x=4x\left(x+2\right)\)

c) \(5x^2+10x=5x\left(x+2\right)\)

d) \(2x^2-8x=2x\left(x-4\right)\)

e) \(5x-15y=5\left(x-3y\right)\)

f) \(x\left(x^2-1\right)+3\left(x^2-1\right)=\left(x^2-1\right)\left(x+3\right)\)

\(=\left(x-1\right)\left(x+1\right)\left(x+3\right)\)

g) \(x^2-2x+1-4y^2=\left(x-1\right)^2-4y^2\)

\(=\left(x-1-2y\right)\left(x-1+2y\right)\)

h) \(x^2-100=\left(x-10\right)\left(x+10\right)\)

i) \(9x^2-18x+9=\left(3x-3\right)^2\)

k) \(x^3-8=\left(x-2\right)\left(x^2+2x+4\right)\)

l) \(x^2+6xy^2+9y^4=\left(x+3y\right)^2\)

m) \(4xy-4x^2-y^2=-\left(4x^2-4xy+y^2\right)\)

\(=-\left(2x-y\right)^2\)

n) \(\left(x-15\right)^2-16=\left(x-15-16\right)\left(x-15+16\right)\)

\(=\left(x-31\right)\left(x+1\right)\)

o) \(25-\left(3-x\right)^2=\left(5-3+x\right)\left(5+3+x\right)\)

\(=\left(2+x\right)\left(8+x\right)\)

p) \(\left(7x-4\right)^2-\left(2x+1\right)^2\)

\(=\left(7x-4-2x-1\right)\left(7x-4+2x+1\right)\)

\(=\left(5x-5\right)\left(9x-3\right)\)

24 tháng 9 2017

Bài 1 :

a ) \(6x^2+9x=3x\left(x+3\right)\)

b ) \(4x^2+8x=4x\left(x+2\right)\)

c ) \(5x^2+10x=5x\left(x+2\right)\)

d ) \(2x^2-8x=2x\left(x-4\right)\)

e ) \(5x-15y=5\left(x-3y\right)\)

f ) \(x\left(x^2-1\right)+3\left(x^2-1\right)=\left(x^2-1\right)\left(x+3\right)\)

g ) \(x^2-2x+1-4y^2=\left(x-1\right)^2-\left(2y\right)^2=\left(x-1-2y\right)\left(x-1+2y\right)\)

h ) \(x^2-100=x^2-10^2=\left(x-10\right)\left(x+10\right)\)

i ) \(9x^2-18x+9=\left(3x-3\right)^2\)

k ) \(x^3-8=\left(x-2\right)\left(x^2+2x+2^2\right)\)

l ) \(x^2+6xy^2+9y^4=\left(x+3y^2\right)^2\)

m ) \(4xy-4x^2-y^2=-\left(2x-y\right)^2\)

n ) \(\left(x-15\right)^2=x^2-30x+15^2\)

o ) \(25-\left(3-x\right)^2=\left(5-3+x\right)\left(5+3-x\right)=\left(2+x\right)\left(8-x\right)\)

p ) \(\left(7x-4\right)^2-\left(2x+1\right)^2=\left(7x-4-2x-1\right)\left(7x-4+2x+1\right)=\left(5x-5\right)\left(9x-3\right)\)

Bài 2 :

a ) \(3x^3-6x^2+3x^2y-6xy=3x\left(x^2-2x+xy-2y\right)\)

b ) \(x^2-2x+xy-2y=x\left(x-2\right)+y\left(x-2\right)=\left(x-2\right)\left(x+y\right)\)

c ) \(2x+x^2-2y-2xy=......................\)

d ) \(x^2-2xy+y^2-9=\left(x-y\right)^2-3^2=\left(x-y-3\right)\left(x-y+3\right)\)

e ) \(x^2+y^2-2xy-4=\left(x-y\right)^2-2^2=\left(x-y-2\right)\left(x-y+2\right)\)

f )\(2xy-x^2-y^2+9=-\left(x-y\right)^2+9=3^2-\left(x-y\right)^2=\left(3-x+y\right)\left(3+x-y\right)\)

16 tháng 8 2016

A= ... (mik k rảh viết vào) 3/2 > ... vì 3/2 > 1 còn ... < 1

B = .... 2/3 < vì 2/3 <1 còn ... > 1

15 tháng 8 2019

Dạng 1:

a) \(x^4+y^2-2x^2y=\left(x^2-y\right)^2\)

b) \(\left(2a+b\right)^2-\left(2b+a\right)^2\)

\(=\left(2a+b-2b-a\right)\left(2a+b+2b+a\right)\)

\(=\left(a-b\right)\left(3a+3b\right)\)

\(=3\left(a-b\right)\left(a+b\right)\)

c) \(\left(x^2+1\right)^2-4x^2\)

\(=\left(x^2-2x+1\right)\left(x^2+2x+1\right)\)

\(=\left(x-1\right)^2\cdot\left(x+1\right)^2\)

d) \(a^3+b^3+c^3-3abc\)

\(=a^3+3a^2b+3ab^2+b^3+c^3-3abc-3a^2b-3ab^2\)

\(=\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2+2ab-ca-bc-3ab\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

15 tháng 8 2019

Dạng 2:

a) \(\left(7n-2\right)^2-\left(2n-7\right)^2\)

\(=\left(7n-2-2n+7\right)\left(7n-2+2n-7\right)\)

\(=\left(5n+5\right)\left(9n-9\right)\)

\(=45\cdot\left(n+1\right)\cdot\left(n-1\right)⋮3;5;9\) chứ không chia hết cho 7

Bạn xem lại đề.

b) \(n^3-n=n\left(n^2-1\right)=n\left(n-1\right)\left(n+1\right)\)

\(n\left(n-1\right)\left(n+1\right)\) là tích 3 số nguyên liên tiếp nên tích đó chia hết cho 2 và 3.

Mặt khác \(\left(2;3\right)=1\)

Do đó \(n\left(n-1\right)\left(n+1\right)⋮2.3=6\) ( đpcm

Phân tích đa thức thành nhân tử:

a) Ta có: \(3x^2-8xy+5y^2\)

\(=3x^2-3xy-5xy+5y^2\)

\(=3x\left(x-y\right)-5y\left(x-y\right)\)

\(=\left(x-y\right)\left(3x-5y\right)\)

b) Ta có: \(8xy^3+x\left(x-y\right)^3\)

\(=x\left[8y^3-\left(x-y\right)^3\right]\)

\(=x\left[2y-\left(x-y\right)\right]\left[4y^2+2y\left(x-y\right)+\left(x-y\right)^2\right]\)

\(=x\left(2y-x+y\right)\left(4y^2+2xy-2y^2+x^2-2xy+y^2\right)\)

\(=x\left(3y-x\right)\left(3y^2+x^2\right)\)

c) Ta có: \(2x\left(x-3\right)-x+3\)

\(=2x\left(x-3\right)-\left(x-3\right)\)

\(=\left(x-3\right)\left(2x-1\right)\)

d) Ta có: \(x^4-4x^3+4x^2\)

\(=x^2\left(x^2-4x+4\right)\)

\(=x^2\cdot\left(x-2\right)^2\)

e) Ta có: \(4x^2+4xy-4z^2+y^2-4z-1\)

\(=\left(4x^2+4xy+y^2\right)-\left(4z^2+4z+1\right)\)

\(=\left(2x+y\right)^2-\left(2z+1\right)^2\)

\(=\left(2x+y-2z-1\right)\left(2x+y+2z+1\right)\)

f) Ta có: \(x^2-2xy+y^2-x+y-6\)

\(=\left(x-y\right)^2-\left(x-y\right)-6\)

\(=\left(x-y\right)^2-3\left(x-y\right)+2\left(x-y\right)-6\)

\(=\left(x-y\right)\left(x-y-3\right)+2\left(x-y-3\right)\)

\(=\left(x-y-3\right)\left(x-y+2\right)\)

g) Ta có: \(x^2\left(x+3\right)^2-\left(x+3\right)^2-\left(x^2-1\right)\)

\(=x^2\left(x^2+6x+9\right)-\left(x^2+6x+9\right)-x^2+1\)

\(=\left(x^2-6x+9\right)\left(x^2-1\right)-\left(x^2-1\right)\)

\(=\left(x^2-1\right)\left(x^2-6x+9-1\right)\)

\(=\left(x-1\right)\left(x+1\right)\left(x^2-6x+8\right)\)

\(=\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x-4\right)\)

Bài 1: Rút gọn biểu thức a. (5+3x)(x-2)-3(x+3)\(^2\) b. (x\(^2\)-1)(x+2)-(x-2)(x\(^2\)+2x+4) Bài 2: Phân tích đa thức thành nhân tử a. (x+y)\(^2\)+(x\(^2\)-y\(^2\)) b. -4x\(^2\)+25+4xy-y\(^2\) c. x\(^2\)-2xy+y\(^2\)-z\(^2\)+2zt-t\(^2\) d. x\(^2\)-x-12 e. 2x\(^2\)+x-6 f. 3x\(^2\)+2x-5 g. x\(^3\)+2x\(^2\)-3 Bài 3: Tìm GTNN của biểu thức A,B và GTLN của biểu thức M,N a) A= x\(^2\)+4x+9 b) B= 2x\(^2\)-20x+53 c) M= 1+6x-x\(^2\) d) N=...
Đọc tiếp

Bài 1: Rút gọn biểu thức

a. (5+3x)(x-2)-3(x+3)\(^2\)

b. (x\(^2\)-1)(x+2)-(x-2)(x\(^2\)+2x+4)

Bài 2: Phân tích đa thức thành nhân tử

a. (x+y)\(^2\)+(x\(^2\)-y\(^2\))

b. -4x\(^2\)+25+4xy-y\(^2\)

c. x\(^2\)-2xy+y\(^2\)-z\(^2\)+2zt-t\(^2\)

d. x\(^2\)-x-12

e. 2x\(^2\)+x-6

f. 3x\(^2\)+2x-5

g. x\(^3\)+2x\(^2\)-3

Bài 3: Tìm GTNN của biểu thức A,B và GTLN của biểu thức M,N

a) A= x\(^2\)+4x+9

b) B= 2x\(^2\)-20x+53

c) M= 1+6x-x\(^2\)

d) N= -x\(^2\)-y\(^2\)+xy+2x+2y

Bài 4: Tìm số

a) Tìm a để x\(^4\)-x\(^3\)+6x\(^2\)-x+a chia hết cho x\(^2\)-x+5

b) Tìm giái trị nguyên của n để 3n\(^3\)+10n\(^2\)-5 chia hết cho 3n+1

Bài 8: Tính giá trị của biểu thức

a) A= x\(^3\)-y\(^3\)-3xy với x-y=1

b) B= x\(^4\)+y\(^4\) với x,y là các số dương thỏa xy= 5, x\(^2\)+y\(^2\)=18

c) C= x\(^3\)-3xy(x-y)-y\(^3\)-x\(^2\)+2xy-y\(^2\) với x-y=7

d) D=x\(^{2013}\)-12x\(^{2012}\)+12x\(^{2011}\)-...+12x\(^3\)-12x\(^2\)+12x-2013 với x

Ai biết bài nào thì giải hộ em với ạ TvT

2
21 tháng 10 2019

Bài 3:

a) ta có: \(A=x^2+4x+9\)

\(=x^2+4x+4+5=\left(x+2\right)^2+5\)

Ta có: \(\left(x+2\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+2\right)^2+5\ge5\forall x\)

Dấu '=' xảy ra khi

\(\left(x+2\right)^2=0\Leftrightarrow x+2=0\Leftrightarrow x=-2\)

Vậy: GTNN của đa thức \(A=x^2+4x+9\) là 5 khi x=-2

b) Ta có: \(B=2x^2-20x+53\)

\(=2\left(x^2-10x+\frac{53}{2}\right)\)

\(=2\left(x^2-10x+25+\frac{3}{2}\right)\)

\(=2\left[\left(x-5\right)^2+\frac{3}{2}\right]\)

\(=2\left(x-5\right)^2+2\cdot\frac{3}{2}\)

\(=2\left(x-5\right)^2+3\)

Ta có: \(\left(x-5\right)^2\ge0\forall x\)

\(\Rightarrow2\left(x-5\right)^2\ge0\forall x\)

\(\Rightarrow2\left(x-5\right)^2+3\ge3\forall x\)

Dấu '=' xảy ra khi

\(2\left(x-5\right)^2=0\Leftrightarrow\left(x-5\right)^2=0\Leftrightarrow x-5=0\Leftrightarrow x=5\)

Vậy: GTNN của đa thức \(B=2x^2-20x+53\) là 3 khi x=5

c) Ta có : \(M=1+6x-x^2\)

\(=-x^2+6x+1\)

\(=-\left(x^2-6x-1\right)\)

\(=-\left(x^2-6x+9-10\right)\)

\(=-\left[\left(x-3\right)^2-10\right]\)

\(=-\left(x-3\right)^2+10\)

Ta có: \(\left(x-3\right)^2\ge0\forall x\)

\(\Rightarrow-\left(x-3\right)^2\le0\forall x\)

\(\Rightarrow-\left(x-3\right)^2+10\le10\forall x\)

Dấu '=' xảy ra khi

\(-\left(x-3\right)^2=0\Leftrightarrow\left(x-3\right)^2=0\Leftrightarrow x-3=0\Leftrightarrow x=3\)

Vậy: GTLN của đa thức \(M=1+6x-x^2\) là 10 khi x=3

21 tháng 10 2019

Bài 2:

a) \(\left(x+y\right)^2+\left(x^2-y^2\right)\)

\(=\left(x+y\right)^2+\left(x-y\right).\left(x+y\right)\)

\(=\left(x+y\right).\left(x+y+x-y\right)\)

\(=\left(x+y\right).2x\)

c) \(x^2-2xy+y^2-z^2+2zt-t^2\)

\(=\left(x^2-2xy+y^2\right)-\left(z^2-2zt+t^2\right)\)

\(=\left(x-y\right)^2-\left(z-t\right)^2\)

\(=\left[x-y-\left(z-t\right)\right].\left(x-y+z-t\right)\)

\(=\left(x-y-z+t\right).\left(x-y+z-t\right)\)

Chúc bạn học tốt!

23 tháng 10 2017

a )

Để A \(⋮\) B thì \(x^n\ge x^3\) \(\Rightarrow n\ge3\)

Để M \(⋮\) N thì \(y^n\ge y^2\Rightarrow n\ge2\)

23 tháng 10 2017

a, A= 5\(x^ny^3\)

B= 4\(x^3y\)

=> A\(⋮\)B -> n \(\ge\)3

b, làm tương tự như trên

26 tháng 7 2019

a) \(5xy^3+30x^2z^2-6x^3yz-25y^2z\)

\(=\left(5xy^3-25y^2z\right)+\left(30x^2z^2-6x^3yz\right)\)

\(=5y^2\left(xy-5z\right)+6x^2z\left(5z-xy\right)\)

\(=5y^2\left(xy-5z\right)-6x^2z\left(xy-5z\right)\)

\(=\left(xy-5z\right)\left(5y^2-6x^2z\right)\)

P/s:Bài này chỉ có nước mỏ hạng tử để ghép -_-

26 tháng 7 2019

xí câu dễ nhất (còn lại làm sau)

c): Đặt \(t=x^2-x\). Ta có:

\(\left(t+1\right)\left(t+2\right)-12=t^2+3t-10\)

\(=t^2+5t-2t-10\)

\(=t\left(t+5\right)-2\left(t+5\right)=\left(t-2\right)\left(t+5\right)\)

\(=\left(x^2-x-2\right)\left(x^2-x+5\right)\)

5 tháng 10 2018

a ) \(x^4+x^3+2x^2+x+1\)

\(=\left(x^4+x^3+x^2\right)+\left(x^2+x+1\right)\)

\(=x^2\left(x^2+x+1\right)+\left(x^2+x+1\right)\)

\(=\left(x^2+1\right)\left(x^2+x+1\right)\)

b ) \(x^2-2x-4y^2-4y\)

\(=\left(x^2-4y^2\right)-\left(2x+4y\right)\)

\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)

\(=\left(x+2y\right)\left(x-2y-2\right)\)

c ) \(x^4+2x^3-4x-4\)

\(=x^4+2x^3+x^2-x^2-4x-4\)

\(=\left(x^2+x\right)^2-\left(x+2\right)^2\)

\(=\left(x^2+x-x-2\right)\left(x^2+x+x+2\right)\)

\(=\left(x^2-2\right)\left(x^2+2x+2\right)\)

d ) \(x^2\left(1-x^2\right)-4-4x^2\)

\(=x^2-x^4-4-4x^2\)

\(=x^2-\left(x^2+2\right)^2\)

\(=\left(x-x^2-2\right)\left(x+x^2+2\right)\)

e ) Đề bài ko rõ

f ) \(\left(1+2x\right)\left(1-2x\right)-x\left(x+2\right)\left(x-2\right)\)

\(=1-4x^2-x\left(x^2-4\right)\)

\(=1-4x^2-x^3+4x\)

\(=\left(1-x^3\right)+4x\left(1-x\right)\)

\(=\left(1-x\right)\left(1+x+x^2\right)+4x\left(1-x\right)\)

\(=\left(1-x\right)\left(1+x+x^2+4x\right)\)

\(=\left(1-x\right)\left(x^2+5x+1\right)\)

15 tháng 10 2017

- Help me

15 tháng 10 2017

\(a,16x^2-4y^2\)

\(=\left(4x\right)^2-\left(2y\right)^2\)

\(=\left(4x-2y\right)\left(4x+2y\right)\)

\(=\left[2\left(2x-y\right)\right]\left[2\left(2x+y\right)\right]\)

\(=4\left(2x-y\right)\left(2x+y\right)\)

\(b,mx-my-nx+ny+y^2-2xy+x^2\)

\(=\left(mx-my\right)-\left(nx-ny\right)+\left(y^2-2xy+x^2\right)\)

\(=m\left(x-y\right)-n\left(x-y\right)+\left(x-y\right)^2\)

\(=\left(x-y\right)\left(m-n-x+y\right)\)

\(c,\left(x+y+z\right)^3-x^3-y^3-z^3\)

\(=\left[\left(x+y+z\right)^3-x^3\right]-\left[y^3+z^3\right]\)

\(=\left(x+y+z-x\right)\left[\left(x+y+z\right)^2+\left(x+y+z\right)x+x^2\right]-\left(y+z\right)\left(y^2-yz+z^2\right)\)

\(=\left(y+z\right)\left[\left(x+y+z\right)^2+x^2+xy+z^2-y^2+yz-z^2\right]\)

\(=\left(y+z\right)\left(x^2+y^2+z^2+2xy+2xz+2yz+x^2+xy+z^2-y^2+yz-z^2\right)\)

\(=\left(y+z\right)\left(2x^2+z^2+3xy+3yz+2xz\right)\)