Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dài dữ trời :V Về sau gửi từng bài một thôi, nhìn hoa mắt quá @@
B1: Phân tích thành nhân tử:
a) \(6x^2+9x=3x\left(2x+3\right)\)
b) \(4x^2+8x=4x\left(x+2\right)\)
c) \(5x^2+10x=5x\left(x+2\right)\)
d) \(2x^2-8x=2x\left(x-4\right)\)
e) \(5x-15y=5\left(x-3y\right)\)
f) \(x\left(x^2-1\right)+3\left(x^2-1\right)=\left(x^2-1\right)\left(x+3\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x+3\right)\)
g) \(x^2-2x+1-4y^2=\left(x-1\right)^2-4y^2\)
\(=\left(x-1-2y\right)\left(x-1+2y\right)\)
h) \(x^2-100=\left(x-10\right)\left(x+10\right)\)
i) \(9x^2-18x+9=\left(3x-3\right)^2\)
k) \(x^3-8=\left(x-2\right)\left(x^2+2x+4\right)\)
l) \(x^2+6xy^2+9y^4=\left(x+3y\right)^2\)
m) \(4xy-4x^2-y^2=-\left(4x^2-4xy+y^2\right)\)
\(=-\left(2x-y\right)^2\)
n) \(\left(x-15\right)^2-16=\left(x-15-16\right)\left(x-15+16\right)\)
\(=\left(x-31\right)\left(x+1\right)\)
o) \(25-\left(3-x\right)^2=\left(5-3+x\right)\left(5+3+x\right)\)
\(=\left(2+x\right)\left(8+x\right)\)
p) \(\left(7x-4\right)^2-\left(2x+1\right)^2\)
\(=\left(7x-4-2x-1\right)\left(7x-4+2x+1\right)\)
\(=\left(5x-5\right)\left(9x-3\right)\)
Bài 1 :
a ) \(6x^2+9x=3x\left(x+3\right)\)
b ) \(4x^2+8x=4x\left(x+2\right)\)
c ) \(5x^2+10x=5x\left(x+2\right)\)
d ) \(2x^2-8x=2x\left(x-4\right)\)
e ) \(5x-15y=5\left(x-3y\right)\)
f ) \(x\left(x^2-1\right)+3\left(x^2-1\right)=\left(x^2-1\right)\left(x+3\right)\)
g ) \(x^2-2x+1-4y^2=\left(x-1\right)^2-\left(2y\right)^2=\left(x-1-2y\right)\left(x-1+2y\right)\)
h ) \(x^2-100=x^2-10^2=\left(x-10\right)\left(x+10\right)\)
i ) \(9x^2-18x+9=\left(3x-3\right)^2\)
k ) \(x^3-8=\left(x-2\right)\left(x^2+2x+2^2\right)\)
l ) \(x^2+6xy^2+9y^4=\left(x+3y^2\right)^2\)
m ) \(4xy-4x^2-y^2=-\left(2x-y\right)^2\)
n ) \(\left(x-15\right)^2=x^2-30x+15^2\)
o ) \(25-\left(3-x\right)^2=\left(5-3+x\right)\left(5+3-x\right)=\left(2+x\right)\left(8-x\right)\)
p ) \(\left(7x-4\right)^2-\left(2x+1\right)^2=\left(7x-4-2x-1\right)\left(7x-4+2x+1\right)=\left(5x-5\right)\left(9x-3\right)\)
Bài 2 :
a ) \(3x^3-6x^2+3x^2y-6xy=3x\left(x^2-2x+xy-2y\right)\)
b ) \(x^2-2x+xy-2y=x\left(x-2\right)+y\left(x-2\right)=\left(x-2\right)\left(x+y\right)\)
c ) \(2x+x^2-2y-2xy=......................\)
d ) \(x^2-2xy+y^2-9=\left(x-y\right)^2-3^2=\left(x-y-3\right)\left(x-y+3\right)\)
e ) \(x^2+y^2-2xy-4=\left(x-y\right)^2-2^2=\left(x-y-2\right)\left(x-y+2\right)\)
f )\(2xy-x^2-y^2+9=-\left(x-y\right)^2+9=3^2-\left(x-y\right)^2=\left(3-x+y\right)\left(3+x-y\right)\)
Dạng 1:
a) \(x^4+y^2-2x^2y=\left(x^2-y\right)^2\)
b) \(\left(2a+b\right)^2-\left(2b+a\right)^2\)
\(=\left(2a+b-2b-a\right)\left(2a+b+2b+a\right)\)
\(=\left(a-b\right)\left(3a+3b\right)\)
\(=3\left(a-b\right)\left(a+b\right)\)
c) \(\left(x^2+1\right)^2-4x^2\)
\(=\left(x^2-2x+1\right)\left(x^2+2x+1\right)\)
\(=\left(x-1\right)^2\cdot\left(x+1\right)^2\)
d) \(a^3+b^3+c^3-3abc\)
\(=a^3+3a^2b+3ab^2+b^3+c^3-3abc-3a^2b-3ab^2\)
\(=\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2+2ab-ca-bc-3ab\right)\)
\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
Dạng 2:
a) \(\left(7n-2\right)^2-\left(2n-7\right)^2\)
\(=\left(7n-2-2n+7\right)\left(7n-2+2n-7\right)\)
\(=\left(5n+5\right)\left(9n-9\right)\)
\(=45\cdot\left(n+1\right)\cdot\left(n-1\right)⋮3;5;9\) chứ không chia hết cho 7
Bạn xem lại đề.
b) \(n^3-n=n\left(n^2-1\right)=n\left(n-1\right)\left(n+1\right)\)
Vì \(n\left(n-1\right)\left(n+1\right)\) là tích 3 số nguyên liên tiếp nên tích đó chia hết cho 2 và 3.
Mặt khác \(\left(2;3\right)=1\)
Do đó \(n\left(n-1\right)\left(n+1\right)⋮2.3=6\) ( đpcm
Phân tích đa thức thành nhân tử:
a) Ta có: \(3x^2-8xy+5y^2\)
\(=3x^2-3xy-5xy+5y^2\)
\(=3x\left(x-y\right)-5y\left(x-y\right)\)
\(=\left(x-y\right)\left(3x-5y\right)\)
b) Ta có: \(8xy^3+x\left(x-y\right)^3\)
\(=x\left[8y^3-\left(x-y\right)^3\right]\)
\(=x\left[2y-\left(x-y\right)\right]\left[4y^2+2y\left(x-y\right)+\left(x-y\right)^2\right]\)
\(=x\left(2y-x+y\right)\left(4y^2+2xy-2y^2+x^2-2xy+y^2\right)\)
\(=x\left(3y-x\right)\left(3y^2+x^2\right)\)
c) Ta có: \(2x\left(x-3\right)-x+3\)
\(=2x\left(x-3\right)-\left(x-3\right)\)
\(=\left(x-3\right)\left(2x-1\right)\)
d) Ta có: \(x^4-4x^3+4x^2\)
\(=x^2\left(x^2-4x+4\right)\)
\(=x^2\cdot\left(x-2\right)^2\)
e) Ta có: \(4x^2+4xy-4z^2+y^2-4z-1\)
\(=\left(4x^2+4xy+y^2\right)-\left(4z^2+4z+1\right)\)
\(=\left(2x+y\right)^2-\left(2z+1\right)^2\)
\(=\left(2x+y-2z-1\right)\left(2x+y+2z+1\right)\)
f) Ta có: \(x^2-2xy+y^2-x+y-6\)
\(=\left(x-y\right)^2-\left(x-y\right)-6\)
\(=\left(x-y\right)^2-3\left(x-y\right)+2\left(x-y\right)-6\)
\(=\left(x-y\right)\left(x-y-3\right)+2\left(x-y-3\right)\)
\(=\left(x-y-3\right)\left(x-y+2\right)\)
g) Ta có: \(x^2\left(x+3\right)^2-\left(x+3\right)^2-\left(x^2-1\right)\)
\(=x^2\left(x^2+6x+9\right)-\left(x^2+6x+9\right)-x^2+1\)
\(=\left(x^2-6x+9\right)\left(x^2-1\right)-\left(x^2-1\right)\)
\(=\left(x^2-1\right)\left(x^2-6x+9-1\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x^2-6x+8\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x-4\right)\)
Bài 3:
a) ta có: \(A=x^2+4x+9\)
\(=x^2+4x+4+5=\left(x+2\right)^2+5\)
Ta có: \(\left(x+2\right)^2\ge0\forall x\)
\(\Rightarrow\left(x+2\right)^2+5\ge5\forall x\)
Dấu '=' xảy ra khi
\(\left(x+2\right)^2=0\Leftrightarrow x+2=0\Leftrightarrow x=-2\)
Vậy: GTNN của đa thức \(A=x^2+4x+9\) là 5 khi x=-2
b) Ta có: \(B=2x^2-20x+53\)
\(=2\left(x^2-10x+\frac{53}{2}\right)\)
\(=2\left(x^2-10x+25+\frac{3}{2}\right)\)
\(=2\left[\left(x-5\right)^2+\frac{3}{2}\right]\)
\(=2\left(x-5\right)^2+2\cdot\frac{3}{2}\)
\(=2\left(x-5\right)^2+3\)
Ta có: \(\left(x-5\right)^2\ge0\forall x\)
\(\Rightarrow2\left(x-5\right)^2\ge0\forall x\)
\(\Rightarrow2\left(x-5\right)^2+3\ge3\forall x\)
Dấu '=' xảy ra khi
\(2\left(x-5\right)^2=0\Leftrightarrow\left(x-5\right)^2=0\Leftrightarrow x-5=0\Leftrightarrow x=5\)
Vậy: GTNN của đa thức \(B=2x^2-20x+53\) là 3 khi x=5
c) Ta có : \(M=1+6x-x^2\)
\(=-x^2+6x+1\)
\(=-\left(x^2-6x-1\right)\)
\(=-\left(x^2-6x+9-10\right)\)
\(=-\left[\left(x-3\right)^2-10\right]\)
\(=-\left(x-3\right)^2+10\)
Ta có: \(\left(x-3\right)^2\ge0\forall x\)
\(\Rightarrow-\left(x-3\right)^2\le0\forall x\)
\(\Rightarrow-\left(x-3\right)^2+10\le10\forall x\)
Dấu '=' xảy ra khi
\(-\left(x-3\right)^2=0\Leftrightarrow\left(x-3\right)^2=0\Leftrightarrow x-3=0\Leftrightarrow x=3\)
Vậy: GTLN của đa thức \(M=1+6x-x^2\) là 10 khi x=3
Bài 2:
a) \(\left(x+y\right)^2+\left(x^2-y^2\right)\)
\(=\left(x+y\right)^2+\left(x-y\right).\left(x+y\right)\)
\(=\left(x+y\right).\left(x+y+x-y\right)\)
\(=\left(x+y\right).2x\)
c) \(x^2-2xy+y^2-z^2+2zt-t^2\)
\(=\left(x^2-2xy+y^2\right)-\left(z^2-2zt+t^2\right)\)
\(=\left(x-y\right)^2-\left(z-t\right)^2\)
\(=\left[x-y-\left(z-t\right)\right].\left(x-y+z-t\right)\)
\(=\left(x-y-z+t\right).\left(x-y+z-t\right)\)
Chúc bạn học tốt!
a )
Để A \(⋮\) B thì \(x^n\ge x^3\) \(\Rightarrow n\ge3\)
Để M \(⋮\) N thì \(y^n\ge y^2\Rightarrow n\ge2\)
a, A= 5\(x^ny^3\)
B= 4\(x^3y\)
=> A\(⋮\)B -> n \(\ge\)3
b, làm tương tự như trên
a) \(5xy^3+30x^2z^2-6x^3yz-25y^2z\)
\(=\left(5xy^3-25y^2z\right)+\left(30x^2z^2-6x^3yz\right)\)
\(=5y^2\left(xy-5z\right)+6x^2z\left(5z-xy\right)\)
\(=5y^2\left(xy-5z\right)-6x^2z\left(xy-5z\right)\)
\(=\left(xy-5z\right)\left(5y^2-6x^2z\right)\)
P/s:Bài này chỉ có nước mỏ hạng tử để ghép -_-
a ) \(x^4+x^3+2x^2+x+1\)
\(=\left(x^4+x^3+x^2\right)+\left(x^2+x+1\right)\)
\(=x^2\left(x^2+x+1\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+1\right)\left(x^2+x+1\right)\)
b ) \(x^2-2x-4y^2-4y\)
\(=\left(x^2-4y^2\right)-\left(2x+4y\right)\)
\(=\left(x-2y\right)\left(x+2y\right)-2\left(x+2y\right)\)
\(=\left(x+2y\right)\left(x-2y-2\right)\)
c ) \(x^4+2x^3-4x-4\)
\(=x^4+2x^3+x^2-x^2-4x-4\)
\(=\left(x^2+x\right)^2-\left(x+2\right)^2\)
\(=\left(x^2+x-x-2\right)\left(x^2+x+x+2\right)\)
\(=\left(x^2-2\right)\left(x^2+2x+2\right)\)
d ) \(x^2\left(1-x^2\right)-4-4x^2\)
\(=x^2-x^4-4-4x^2\)
\(=x^2-\left(x^2+2\right)^2\)
\(=\left(x-x^2-2\right)\left(x+x^2+2\right)\)
e ) Đề bài ko rõ
f ) \(\left(1+2x\right)\left(1-2x\right)-x\left(x+2\right)\left(x-2\right)\)
\(=1-4x^2-x\left(x^2-4\right)\)
\(=1-4x^2-x^3+4x\)
\(=\left(1-x^3\right)+4x\left(1-x\right)\)
\(=\left(1-x\right)\left(1+x+x^2\right)+4x\left(1-x\right)\)
\(=\left(1-x\right)\left(1+x+x^2+4x\right)\)
\(=\left(1-x\right)\left(x^2+5x+1\right)\)
\(a,16x^2-4y^2\)
\(=\left(4x\right)^2-\left(2y\right)^2\)
\(=\left(4x-2y\right)\left(4x+2y\right)\)
\(=\left[2\left(2x-y\right)\right]\left[2\left(2x+y\right)\right]\)
\(=4\left(2x-y\right)\left(2x+y\right)\)
\(b,mx-my-nx+ny+y^2-2xy+x^2\)
\(=\left(mx-my\right)-\left(nx-ny\right)+\left(y^2-2xy+x^2\right)\)
\(=m\left(x-y\right)-n\left(x-y\right)+\left(x-y\right)^2\)
\(=\left(x-y\right)\left(m-n-x+y\right)\)
\(c,\left(x+y+z\right)^3-x^3-y^3-z^3\)
\(=\left[\left(x+y+z\right)^3-x^3\right]-\left[y^3+z^3\right]\)
\(=\left(x+y+z-x\right)\left[\left(x+y+z\right)^2+\left(x+y+z\right)x+x^2\right]-\left(y+z\right)\left(y^2-yz+z^2\right)\)
\(=\left(y+z\right)\left[\left(x+y+z\right)^2+x^2+xy+z^2-y^2+yz-z^2\right]\)
\(=\left(y+z\right)\left(x^2+y^2+z^2+2xy+2xz+2yz+x^2+xy+z^2-y^2+yz-z^2\right)\)
\(=\left(y+z\right)\left(2x^2+z^2+3xy+3yz+2xz\right)\)