K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 5 2021

m=1

`hpt`:$\begin{cases}x+y=1\\x+4y=2\\\end{cases}$

`<=>` $\begin{cases}3y=1\\x=1-y\\\end{cases}$

`<=>` $\begin{cases}y=\dfrac13\\x=\dfrac23\\\end{cases}$

20 tháng 5 2021

em/cảm/ơn/ạ

19 tháng 1 2016

1/ khi m=3 ta có

x+3y=3

3x+4y=7

<=>x=3-3y

      3(3-3y)+4y=7

<=>x=3-3y

      3y+4y=7

<=>x=3-3y

      7y=7

==>y=1

<=>x=3-3y

=>x=3-3.1

=>x=3-3

==>x=0

vây x=0     ; y=1

30 tháng 5 2016

Cô làm câu b thôi nhé :)

Ta có hệ \(\hept{\begin{cases}mx+4y=10-m\\x+my=4\end{cases}}\Leftrightarrow\hept{\begin{cases}m\left(4-my\right)+4y=10-m\\x=4-my\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(4-m^2\right)y=10-5m\left(1\right)\\x=4-my\end{cases}}\)

Với \(4-m^2=0\Leftrightarrow m=2\) hoặc \(m=-2\)

Xét m =2, phương trình (1) tương đương 0.x = 0. Vậy hệ phương trình có vô số nghiệm dạng \(\left(4-2t;t\right)\)

Xét m = -2, phương trình (1) tương đương 0.x = 20. Vậy hệ phương trình vô nghiệm.

Với \(4-m^2\ne0\Leftrightarrow m\ne2\) và \(m\ne-2\), phương trình (1) tương đương \(y=\frac{10-5m}{4-m^2}=\frac{5}{2+m}\)

Từ đó : \(x=\frac{8-m}{2+m}\)

Kết luận: 

+ m = 2, hệ phương trình có vô số nghiệm dạng \(\left(4-2t;t\right)\)

+ m = - 2, hệ phương trình vô nghiệm.

\(m\ne2;m\ne-2\) hệ có 1 nghiệm duy nhất \(\hept{\begin{cases}x=\frac{8-m}{2+m}\\y=\frac{5}{2+m}\end{cases}}\)

Chúc em học tập tốt :)

9 tháng 12 2021

undefined
hehe
Hỏi từ lâu nhưng bây giờ em trả lời lại cho vui

26 tháng 1 2021

a, Theo bài ra ta có : \(\hept{\begin{cases}mx+4y=9\\x+my=8\end{cases}}\)

Thay m = 1 vào hệ phương trình trên ta có : 

\(\hept{\begin{cases}x+4y=9\\x+y=8\left(2\right)\end{cases}}\)Xét hiệu 2 phương trình  : \(3y=1\Leftrightarrow y=\frac{1}{3}\)

Thay vào (2) ta được : \(x+\frac{1}{3}=8\Leftrightarrow x=8-\frac{1}{3}=\frac{23}{3}\)

Vậy \(x=\frac{23}{3};y=\frac{1}{3}\)

b, Vì hệ phương trình có nghiệm ( 1 ; 3 ) nên thay x = 1 ; y = 3 vào hệ phương trình trên : 

\(\hept{\begin{cases}m+12=9\\3m=8\end{cases}\Leftrightarrow}m=-3;m=\frac{8}{3}\)

Vậy \(m=-3;m=\frac{8}{3}\)

26 tháng 1 2021

a, Vì m = 1 thay vào hệ pt, ta có pt sau

 \(\hept{\begin{cases}x+4y=9\\x+y=8\end{cases}\Leftrightarrow\hept{\begin{cases}x=9-4y\left(1\right)\\9-4y+y=8\left(2\right)\end{cases}}}\)

\(\left(2\right)\Leftrightarrow3y=1\)

\(\Rightarrow y=\frac{1}{3}\)

Thay vào pt ( 1 ), ta có :

\(x=9-4.\frac{1}{3}=\frac{23}{3}\)

Vậy nghiệm ( x ; y ) pt là\(\left(\frac{23}{3};\frac{1}{3}\right)\)

b, Vì pt có nghiệm là ( 1 ; 3 ) hay x = 1 ; y = 3

Thay vào pt, ta có :\(\hept{\begin{cases}m+12=9\\1+3m=8\end{cases}\Leftrightarrow}\hept{\begin{cases}m=-3\\m=\frac{7}{3}\end{cases}}\)

Vậy ...

21 tháng 11 2014

a)thay m=2 => {2x+y=1(1);x+2y=3(2)    

nhân thêm 2 vào (1) Ta có {4x+2y=2;x+2y=3

=>{4x+2y=2;3x=3

<=>{4x+2y=2;x=3

thay x=3 vào(1)=>2.2+y=1

=>y=-5
b) Để hpt có nghiệm duy nhất =>x=y

đặt x=y=a

=>{am+a=1,a+am=2m-1

=>2m-1=1

<=>m=1y2=3y3x(1)x2=3x3yy2=3y3x(1)x2=3x−>y

a) Thay m=1 vào hệ phương trình, ta được:

\(\left\{{}\begin{matrix}x+4y=9\\x+y=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3y=1\\x+y=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{1}{3}\\x=8-y=8-\dfrac{1}{3}=\dfrac{23}{3}\end{matrix}\right.\)

Vậy: Khi m=1 thì hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=\dfrac{23}{3}\\y=\dfrac{1}{3}\end{matrix}\right.\)

b) Để hệ phương trình có nghiệm (1;3) thì 

Thay x=1 và y=3 vào hệ phương trình, ta được:

\(\left\{{}\begin{matrix}m+12=9\\1+3m=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=-3\\3m=7\end{matrix}\right.\Leftrightarrow m\notin\varnothing\)

Vậy: Không có giá trị nào của m để hệ phương trình có nghiệm (1;3)

25 tháng 1 2021

Thay m=1 vào hpt trên ta có:

1.x+4y=9 và x+1y=8

<=> x+4y=9 và x+y=8

<=>  x+4y=9 và 4x+4y=32

<=> -3x = -23 và  x+y=8

<=> x = \(\dfrac{23}{3}\) và y = \(\dfrac{1}{3}\)

b) Để hệ phương trình có nghiệm (1;3)

=> x = 1; y = 3

Thay x = 1; y = 3 vào hpt trên ta có:

       m1+43=9 và 1+m3=8

<=> m+12 = 9 và 1 + 3m = 8

<=> m = -3 và m = \(\dfrac{7}{3}\)

Vậy m \(\in\left\{-3;\sqrt{\dfrac{7}{3}}\right\}\) thì hệ phương trình có nghiệm (1;3)

c) mx+4y=9 và x+my=8 

SD phương pháp thế

Ra pt bậc nhất 1 ẩn: 8m - m2y + 4y = 9

                       <=> 8m -  y(m-4) = 9

Để hệ phương trình có nghiệm duy nhất => m-4 \(\ne\) 0

<=> m \(\ne\) 4

<=> m  \(\ne\) 2 và m  \(\ne\) -2

 

8 tháng 2 2020

a) Xét hpt : \(\hept{\begin{cases}x+my=1\\mx-3my=2m+3\end{cases}}\)

Tại m = -3 ta có :

\(\hept{\begin{cases}x-3y=1\\-3x+3.3y=-2.3+3\end{cases}}\)

<=> \(\hept{\begin{cases}x-3y=1\\-3x+9y=-3\end{cases}}\)

<=> \(\hept{\begin{cases}x-3y=1\\-x+3y=-1\end{cases}}\)

<=>\(\hept{\begin{cases}x-3y=1\\x-3y=1\end{cases}}\)

Do đó hpt có vô số nghiệm với m = -3

8 tháng 2 2020

b) Xét hpt : \(\hept{\begin{cases}x+my=1\\mx-3ym=2m+3\end{cases}}\)

<=> \(\hept{\begin{cases}x=1-my\\m\left(1-my\right)-3ym=2m+3\end{cases}}\)

<=> \(\hept{\begin{cases}x=1-my\\m-m^2y-3my=2m+3\end{cases}}\)

<=> \(\hept{\begin{cases}x=1-my\\\left(m^2+3m\right)y=m-2m-3\end{cases}}\)

<=> \(\hept{\begin{cases}x=1-my\\\left(m^2+3m\right)y=-m-3\end{cases}}\)

Ta có : Hpt có nghiệm duy nhất

<=> Pt trên có nghiệm duy nhất

<=> m2 + 3m khác 0

<=> m(m + 3) khác 0

<=> m khác 0 và m khác -3

=> Ta có :

\(\hept{\begin{cases}x=1-my\\m\left(m+3\right)y=-3-m\end{cases}}\)

<=> \(\hept{\begin{cases}y=\frac{-\left(m+3\right)}{m\left(m+3\right)}\\x=1-my\end{cases}}\)

<=> \(\hept{\begin{cases}x=2\\y=\frac{-1}{m}\end{cases}}\)

<=> \(\hept{\begin{cases}m\left(m+3\right)=0\\-\left(m+3\right)=0\end{cases}}\)

<=>\(\hept{\begin{cases}m=0orm=-3\\m=-3\end{cases}}\)

<=> m = -3

<=> m(m+3) = 0 và m(m + 3) khác 0

<=> m = 0 haowcj m = -3 và m khác -3

<=> m = 0

Vậy

24 tháng 1 2020

\(b,\hept{\begin{cases}x-my=3\left(1\right)\\mx-4y=m+4\left(2\right)\end{cases}}\)

Từ \(\left(1\right)\Rightarrow x=my+3\)

Thay \(x\)vào \(\left(2\right):\left(m^2-4\right)y=4-2m\left(#\right)\)

- Nếu \(m^2-4=0\Leftrightarrow\left(m-2\right)\left(m+2\right)=0\Leftrightarrow\orbr{\begin{cases}m=2\\m=-2\end{cases}}\)

Xét từng giá trị của m sau:

  • \(m=2:\left(#\right)0y=0\)(Luôn đúng)

Hệ có vô số nghiệm: \(\hept{\begin{cases}x=2y+3\\y\inℝ\end{cases}}\)

  • \(m=-2\)\(\left(#\right)\Leftrightarrow0y=8\left(vn\right)\)

Vậy hệ vô nghiệm

- Nếu \(m\ne\pm2\)ta có: \(\left(#\right)\Leftrightarrow y=\frac{4-2m}{m^2-4}\Leftrightarrow y=-\frac{2}{m+2}\)

Ta tìm được \(x=\frac{m+6}{m+2}\)

Hệ có nghiệm: \(\left(x,y\right)=\left(\frac{m+6}{m+2};\frac{-2}{m+2}\right)\)

Vậy: \(m=2\)thì hệ có vô số nghiệm: \(\hept{\begin{cases}x=2y+3\\y\in R\end{cases}}\)

\(m=-2\)hệ vô nghiệm

\(m\ne\pm2\)hệ có nghiệm duy nhất: \(\left(x,y\right)=\left(\frac{m+6}{m+2};\frac{-2}{m+2}\right)\)

19 tháng 3 2020

https://olm.vn/hoi-dap/detail/247392111572.html