Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a
\(A=1+3+3^2+3^3+....+3^{100}\)
\(3A=3+3^2+3^3+3^4+.....+3^{101}\)
\(2A=3^{101}-1\)
\(A=\frac{3^{101}-1}{2}\)
b
\(B=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{99}}\)
\(2B=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{98}}\)
\(B=1-\frac{1}{2^{99}}\)
c
\(C=5^{100}-5^{99}+5^{98}-5^{97}+....+5^2-5+1\)
\(5C=5^{101}-5^{100}+5^{99}-5^{98}+....+5^3-5^2+5\)
\(6C=5^{101}+1\)
\(C=\frac{5^{101}+1}{6}\)
\(B=\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+...+\left(\frac{1}{2}\right)^{99}\)
\(\Rightarrow\frac{1}{2}B=\)\(\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+...+\left(\frac{1}{2}\right)^{100}\)
\(\Rightarrow B-\frac{1}{2}B=\left[\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+...+\left(\frac{1}{2}\right)^{99}\right]-\left[\left(\frac{1}{2}\right)+\left(\frac{1}{2}\right)^2+...+\left(\frac{1}{2}\right)^{100}\right]\)
\(\Rightarrow\frac{1}{2}B=\frac{1}{2}-\left(\frac{1}{2}\right)^{100}\Rightarrow B=\left[\frac{1}{2}-\left(\frac{1}{2}\right)^{100}\right].2\)
câu này cần có điều kiện \(\left(x;y\in Z\right)\) mới tìm được
để mk lm với điều kiện \(\left(x;y\in Z\right)\) nha
ta có : \(\left(3x-\dfrac{1}{5}\right)^{200}+\left(\dfrac{2y}{5}+\dfrac{4}{7}\right)^{100}=100\)
\(\Leftrightarrow\left(3x-\dfrac{1}{5}\right)^{200}=100-\left(\dfrac{2y}{5}+\dfrac{4}{7}\right)^{100}\ge0\)
\(\Rightarrow\left(\dfrac{2y}{5}+\dfrac{4}{7}\right)^{100}\le100\) \(\Leftrightarrow\dfrac{-2\left(\sqrt[100]{100}-\dfrac{4}{7}\right)}{5}\le y\le\dfrac{2\left(\sqrt[100]{100}-\dfrac{4}{7}\right)}{5}\)
\(\Rightarrow y=0\left(y\in Z\right)\)
với \(y=0\) thì ta có : \(\left(3x-\dfrac{1}{5}\right)^{200}+\left(\dfrac{4}{7}\right)^{100}=100\)
\(\Rightarrow\left(3x-\dfrac{1}{5}\right)^{200}=100-\left(\dfrac{4}{7}\right)^{100}\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-\dfrac{1}{5}=\sqrt[200]{100-\left(\dfrac{4}{7}\right)^{100}}\\3x-\dfrac{1}{5}=-\sqrt[200]{100-\left(\dfrac{4}{7}\right)^{100}}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\sqrt[200]{100-\left(\dfrac{4}{7}\right)^{100}}+\dfrac{1}{5}}{3}\\x=\dfrac{-\sqrt[200]{100-\left(\dfrac{4}{7}\right)^{100}}+\dfrac{1}{5}}{3}\end{matrix}\right.\)
vì 2 giá trị này \(\notin Z\) \(\Rightarrow x\in\varnothing\)
vậy phương trình vô nghiệm .
Bài 1:
a: \(2P=2^{101}-2^{100}+2^{98}-2^{97}+...+2^3-2^2\)
=>\(3P=2^{101}-2\)
hay \(P=\dfrac{2^{101}-2}{3}\)
b: \(5Q=5^{101}-5^{100}+5^{99}-5^{98}+...+5^3-5^2+5\)
=>\(6Q=5^{101}+1\)
hay \(Q=\dfrac{5^{101}+1}{6}\)
A=1+3/2^3+4/2^4+5/2^5+...100/2^100
1/2*A = 1/2 + 3/2^4 + 4/2^5 +....+ 99/2^100 + 100/2^101
A- A/2 = 1/2A =1/2 + 3/2^3 + 1/2^4 +...+1/2^100 - 100/2^101=
Tham khảo bài này nha
= [1/2+1/2^2 +1/2^3 +...+1/2^100] -100/2^101 (Do 3/2^3 = 1/2^2 +1/2^3)
=[1-(1/2)^101]/(1-1/2) -100/2^101 =
=(2^101 -1)/2^100 - 100/2^101
=> A= (2^101 -1)/2^99 - 100/2^100
\(=2^5+1-\dfrac{1}{8}=33-\dfrac{1}{8}=\dfrac{263}{8}\)