Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cô hướng dẫn nhé.
a. Kẻ \(DK\perp BC.\)
Khi đó ta thấy \(IA=IK;DA=DK.\)Lại có \(\Delta HIK\sim\Delta KDC\left(g-g\right)\Rightarrow\frac{IH}{KD}=\frac{IK}{DC}\Rightarrow\frac{IH}{IK}=\frac{KD}{DC}\Rightarrow\frac{IH}{IA}=\frac{DA}{DC}\)
b. Ta có \(BE.AB=BH^2;CF.AC=HC^2\Rightarrow BE.AB.CF.AC=HB^2.HC^2=AH^4\)
\(\Rightarrow BE.CF\left(AB.AC\right)=AH^4\Rightarrow BE.CF.AH.BC=AH^4\Rightarrow BE.CF.BC=AH^3\)
c. Tính \(BE\Rightarrow AE;CF\Rightarrow AC\Rightarrow S_{EHF}\)
Bài 1: Giả sử
\(8-\sqrt{2}>4+\sqrt{5}\)
\(\Leftrightarrow4>\sqrt{2}+\sqrt{5}\)
\(\Leftrightarrow16>7+2\sqrt{10}\)
\(\Leftrightarrow9>2\sqrt{10}\Leftrightarrow81>40\)(đúng)
Vậy \(8-\sqrt{2}>4+\sqrt{5}\)
Bài 3: Ta có
\(x^2+2015x-2014=2\sqrt{2017x-2016}\)
\(\Leftrightarrow\left(x^2-2x+1\right)+\left(\left(2017x-2016\right)-2\sqrt{2017x-2016}+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(\sqrt{2017x-2016}-1\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x-1=0\\\sqrt{2017x-2016}-1=0\end{cases}}\)
\(\Leftrightarrow x=1\)
$\dfrac{AB^2}{AC^2}$ = $\frac{BH}{CH}$
Áp dụng hệ thức giữa cạnh góc vuông và hình chiếu của nó lên cạnh huyền, ta có:
$AB^2$ = BC.BH
$AC^2$ = BC. CH
Do đó: $\dfrac{AB^2}{AC^2}$ = $\dfrac{BC.BH}{BC.CH}$ = $\dfrac{BH}{CH}$ (đpcm)
$AE.AB = AF.AC$
Tam giác ABH vuông tại H có EH $\perp$ AB
Do đó: $AH^2$ = AE.AB (1)
Tam giác ACH vuông tại H có FH $\perp$ AC
Do đó: $AH^2$ = AF.AC (2)
Từ (1) và (2) suy ra AE.AB = AF.AC (đpcm)
a) LIÊN TỤC ÁP DỤNG HTL TA ĐƯỢC: \(\hept{\begin{cases}AB^2=BH.BC\\AC^2=CH.CB\end{cases}}\)
=> \(\frac{AB^2}{AC^2}=\frac{BH}{CH}\)
=> \(\frac{AB^4}{AC^4}=\frac{BH^2}{CH^2}\) (1)
LẠI ÁP DỤNG HTL TA ĐƯỢC: \(\hept{\begin{cases}BH^2=BI.BA\\CH^2=CK.CA\end{cases}}\)
=> \(\frac{BH^2}{CH^2}=\frac{BI}{CK}.\left(\frac{AB}{AC}\right)\) (2)
TỪ (1) VÀ (2) TA ĐƯỢC: \(\frac{AB^4}{AC^4}=\frac{BI}{CK}.\left(\frac{AB}{AC}\right)\)
<=> \(\frac{AB^3}{AC^3}=\frac{BI}{CK}\)
VẬY TA CÓ ĐPCM !!!!
ĐẲNG THỨC <=> \(AH^4=AH.BC.BI.CK\)
ÁP DỤNG HTL TRONG TAM GIÁC VUÔNG ABC ĐƯỢC: \(AH.BC=AB.AC\)
=> \(AH.BC.BI.CK=AB.AC.BI.CK=\left(BI.BA\right).\left(CK.CA\right)\)
LIÊN TỤC ÁP DỤNG TIẾP 2 HTL TA LẠI ĐƯỢC:
\(\hept{\begin{cases}BI.BA=BH^2\\CA.CK=CH^2\end{cases}}\)
=> \(\left(BI.BA\right).\left(CA.CK\right)=\left(BH.CH\right)^2=\left(AH^2\right)^2\left(htl\right)=AH^4\)
VẬY TA CÓ ĐPCM !!!!!!
Ta dễ thấy a,b đều dương
Ta có
a + b \(\ge2\sqrt{ab}\)
<=> \(\frac{a+b}{2}\ge\sqrt{ab}\)
làm sao để có được bất phương trình a+b \(\ge\)2 \(\sqrt{ab}\)