\(x=\frac{y}{2}=\frac{z}{3}và4x-3y+2z=36\). tìm x; y ; z

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2015

áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

x/1=y/2 =z/3 =4x−3y+2z/4·1−3·2+2·3 =36/4 =9

x/1 = 9    => x = 9 x 1 = 9

y/2 = 9    => y = 9 x 2 = 18

z/3  =9    => z = 3 x 9 = 27

vậy x = 9, y = 18, z = 27

22 tháng 9 2015

tuy nhiên cũng hơi khó hiểu

5 tháng 6 2015

áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}=\frac{4x-3y+2z}{4\cdot1-3\cdot2+2\cdot3}=\frac{36}{4}=9\)

x/1 = 9    => x = 9 x 1 = 9

y/2 = 9    => y = 9 x 2 = 18

z/3  =9    => z = 3 x 9 = 27

vậy x = 9, y = 18, z = 27

13 tháng 7 2016

bai de ma

14 tháng 3 2024

a; \(\dfrac{x}{2}\) = \(\dfrac{y}{3}\) = \(\dfrac{z}{4}\) 

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

    \(\dfrac{x}{2}\) = \(\dfrac{y}{3}\) = \(\dfrac{z}{4}\) = \(\dfrac{x+y-z}{2+3-4}\) = \(\dfrac{5}{1}=5\)

     \(x=5.2\) = 10; y = 3.5 = 15; z = 4.5 = 20

12 tháng 8 2016

các bạn ơi giải  nhanh giúp mình đi

12 tháng 8 2016

Đặt cái thứ nhất bằng k, rồi rút x;y;z theo k

thay vào cái thứ 2 rồi rút gọn tính dc k;

thay ngược lại tìm x;y;z


 

9 tháng 6 2015

áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}=\frac{4x-3y+2z}{4\cdot1-3\cdot2+2\cdot3}=\frac{36}{4}=9\)

x/1 = 9             => x =1 x 9 = 9

y/2 = 9             => y = 9 x 2 = 18

z/3 = 9             => z = 3 x 9 = 27

9 tháng 6 2015

\(x=\frac{y}{2}=\frac{z}{3}=\frac{4x}{4}=\frac{3y}{6}=\frac{2z}{6}\)  và 4a - 3y + 2z = 36.

Áp dụng dãy tỉ số bằng nhau :

 \(x=\frac{y}{2}=\frac{z}{3}=\frac{4x}{4}=\frac{3y}{6}=\frac{2z}{6}=\frac{4x-3y+2x}{4-6+6}=\frac{36}{4}=9\)

=> x = 9 ; y = 9.2 = 18 ; z = 9.3 = 27

14 tháng 3 2024

16 tháng 8 2017

Coi đề lại câu a

b,

\(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}\\ \dfrac{x-1}{2}=\dfrac{2\left(y-2\right)}{2\cdot3}=\dfrac{3\cdot\left(z-3\right)}{3\cdot4}\\ \dfrac{x-1}{2}=\dfrac{2y-4}{6}=\dfrac{3z-9}{12}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x-1}{2}=\dfrac{2y-4}{6}=\dfrac{3z-9}{12}=\dfrac{x-1-\left(2y-4\right)+3z-9}{2-6+12}=\dfrac{x-1-2y+4+3z-9}{8}=\dfrac{\left(x-2y+3z\right)+\left(4-1-9\right)}{8}=\dfrac{14+\left(-6\right)}{8}=\dfrac{8}{8}=1\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x-1}{2}=1\Rightarrow x-1=2\Rightarrow x=3\\\dfrac{2y-4}{6}=1\Rightarrow2y-4=6\Rightarrow2y=10\Rightarrow y=5\\\dfrac{3z-9}{12}=1\Rightarrow3z-9=12\Rightarrow3z=21\Rightarrow z=7\end{matrix}\right.\)

Vậy x = 3; y = 5; z = 7

16 tháng 8 2017

\(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}\)

\(\Rightarrow\dfrac{x-1}{2}=\dfrac{2y-4}{6}=\dfrac{3z-9}{12}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x-1}{2}=\dfrac{2y-4}{6}=\dfrac{3z-9}{12}\)

\(=\dfrac{x-1-2y+4+3z-9}{2-6+12}\)

\(=\dfrac{14-6}{14-6}=1\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x-1}{2}=1\\\dfrac{y-2}{3}=1\\\dfrac{z-3}{4}=1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=3\\y=5\\z=7\end{matrix}\right.\)

7 tháng 12 2017

Từ x = \(\dfrac{y}{2}=\dfrac{z}{3}\)

=> \(\dfrac{4x}{4}=\dfrac{3y}{6}=\dfrac{2z}{6}\)

Áp dụng t/c dãy tỉ số bằng nhau:

\(\dfrac{4x}{4}=\dfrac{3y}{6}=\dfrac{2z}{6}=\dfrac{4x-3y+2z}{4-6+6}=\dfrac{16}{4}=4\)

Từ \(\dfrac{4x}{4}=4\), => x = \(\dfrac{4.4}{4}\)= 4

Từ \(\dfrac{3y}{6}=4\), => y = \(\dfrac{4.6}{3}\) = 8

Từ \(\dfrac{2z}{6}=4\), => z = \(\dfrac{4.6}{2}\) = 12

Vậy ..