\(\frac{m-4}{m+3}\)

Với giá trị nguyên nào của m thì x=\(\fr...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2016

-Ta có X=1/2

=>(m-4)/(m+3)=1/2

<=>m-4=1/2(m+3)

<=>m-4=m/2+3/2

<=>m-m/2=4+3/2=11/2

<=>m_(1-1/2)=11/2

<=>m/2=11/2=>m=11(thỏa mãn điều kiện m là số nguyên)

Vậy m=11

                 

24 tháng 6 2020

Ta có: \(N=\frac{x+2}{x-1}=\frac{x-1+3}{x-1}=1+\frac{3}{x-1}\)

Để M,N đồng thời có giá trị nguyên thì \(2⋮\left(x+3\right)\)và \(3⋮\left(x-1\right)\)

hay \(x+3\inƯ\left(2\right)\)và \(x-1\inƯ\left(3\right)\)

Ta có bảng:

x+31-12-2
x-2-4-1-5
x-11-13-3
x204

-2

Vay \(x\in\left\{-5;-4;-2;-1;0;2;4\right\}\)

Bài 1: 

a: \(\left(2x-1\right)^4=16\)

=>2x-1=2 hoặc 2x-1=-2

=>2x=3 hoặc 2x=-1

=>x=3/2 hoặc x=-1/2

b: \(\left(2x-y+7\right)^{2012}+\left|x-3\right|^{2013}< =0\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-y+7=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=2x+7=y=2\cdot3+7=13\end{matrix}\right.\)

c: \(10800=2^4\cdot3^3\cdot5^2\)

mà \(2^{x+2}\cdot3^{x+1}\cdot5^x=10800\)

nên \(\left\{{}\begin{matrix}x+2=4\\x+1=3\\x=2\end{matrix}\right.\Leftrightarrow x=2\)

 

3 tháng 3 2016

bn ơi cho mik hỏi cái này là vòng 15 của năm 2015-2016 hả

3 tháng 3 2016

2.    -1;0;1;2

4.     7cm

6.      9

12 tháng 11 2016

a)2(x+y)=2(z+x)

=>\(x+y=z+x\)

=>y=z

=>\(\frac{y-z}{5}=\frac{0}{5}=0\)

 

5(y+z)=2(z+x)

5y+5z=2z+2x

mà y=z(cmt)

nên 5y+5y-2y=2x

8y=2x

x=4y

=>\(\frac{x-y}{4}=\frac{4y-y}{4}=\frac{3y}{4}\)

=>ko thỏa mãn đề bài

 

13 tháng 11 2016

a ) Cho 2( x + y ) = 5( y + z ) = 3( z + x ) thì xy4=yz5

Theo đề bài ra ta có: \(2\left(x+y\right)=5\left(y+z\right)\Rightarrow\frac{x+y}{5}=\frac{y+z}{2}\Rightarrow\frac{x+y}{15}=\frac{y+z}{6}\)

\(5\left(y+z\right)=3\left(z+x\right)\Rightarrow\frac{z+x}{5}=\frac{y+z}{3}\Rightarrow\frac{z+x}{10}=\frac{y+z}{6}\)

\(\Rightarrow\frac{x+y}{15}=\frac{y+z}{6}=\frac{z+x}{10}=\frac{x+y-y-z-z-x}{15-6-10}=\frac{0}{-1}=0\)

\(\Rightarrow\left[\begin{array}{nghiempt}x+y=0\\y+z=0\\z+x=0\end{array}\right.\Rightarrow\left[\begin{array}{nghiempt}x=0\\y=0\\z=0\end{array}\right.\)

\(\Rightarrow5x-5y=4y-4z\)(Do x,y,z=0)

\(\Rightarrow5\left(x-y\right)=4\left(y-z\right)\)

\(\Rightarrow\frac{x-y}{4}=\frac{y-z}{5}\)

 

 

 

8 tháng 11 2017

a) Ta có: \(M=\frac{2x+5}{x+1}=\frac{2\left(x+1\right)+3}{x+1}=\frac{2x+2+3}{x+1}\)

Vì \(2x+2⋮\left(x+1\right)\Rightarrow3⋮\left(x+1\right)\)

Nên \(x+1\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)

\(\Rightarrow x=\left\{0;-2;2;-4\right\}\)

b) Tương tự

30 tháng 5 2019

Ta có: \(\frac{x+1}{7}=0\Leftrightarrow x+1=0\)

                                 \(\Leftrightarrow x=-1\)

Ta có: \(\frac{3x+3}{5}=0\)

\(\Leftrightarrow3x+3=0\)

\(\Leftrightarrow3x=-3\)

\(\Leftrightarrow x=-1\)

30 tháng 5 2019

Ta có: \(\frac{2x\left(x+1\right)}{3x+4}=0\Leftrightarrow2x\left(x+1\right)=0\)

\(\Leftrightarrow x\left(x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)

Vậy x \(\in\left\{-1;0\right\}\) thì \(\frac{2x\left(x+1\right)}{3x+4}=0\)

Ta có: \(\frac{2x\left(x-5\right)}{x-7}=0\Leftrightarrow2x\left(x-5\right)=0\)

\(\Leftrightarrow x\left(x-5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=5\end{cases}}\)

Vậy \(x\in\left\{0;5\right\}\) thì \(\frac{2x\left(x-5\right)}{x-7}=0\)