\(x+\frac{2x+\frac{x-1}{5}}{3}\)\(=1-\frac{3x\frac{1-2x}{3}}{5}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 2 2020

\(\Leftrightarrow x+\frac{11x-1}{\frac{5}{3}}=1-\frac{3x-6x^2}{\frac{3}{5}}\)\(\Leftrightarrow x+\frac{11x-1}{15}=1-\frac{3x-6x^2}{15}\)\(\Leftrightarrow\frac{26x-1}{15}=\frac{15-3x+6x^2}{15}\)\(\Leftrightarrow26x-1=15-3x+6x^2\)\(\Leftrightarrow6x^2-29x+16=0\)\(\Leftrightarrow6x^2-2\cdot\sqrt{6}\cdot\frac{29}{2\sqrt{6}}+\left(\frac{29}{2\sqrt{6}}\right)^2-\frac{697}{24}=0\)\(\Leftrightarrow\left(\sqrt{6}x-\frac{29}{2\sqrt{6}}\right)^2=\frac{697}{24}\)\(\Leftrightarrow\orbr{\begin{cases}\sqrt{6}x-\frac{29}{2\sqrt{6}}=\sqrt{\frac{697}{24}}\\\sqrt{6}x-\frac{29}{2\sqrt{6}}=-\sqrt{\frac{697}{24}}\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=\frac{29+\sqrt{457}}{12}\\x=\frac{29-\sqrt{457}}{12}\end{cases}}\)

18 tháng 6 2020

a, (x-5).(x-1) >0
<=> x-5>0 và x-1>0
<=> x-5>0
<=> x>5
x-1>0
<=> x>1
Vậy x>5
b, (2x-3).(x+1) <0
<=> 2x-3<0 và x+1<0
2x-3<0 <=> 2x<3 <=> x<2/3
x+1<0 <=> x<-1
Vậy x<2/3
c, 2x2 - 3x +1>0
<=> 2x2 - 2x- x +1>0
<=>(x-1). (2x-1) >0
<=> x-1>0 và 2x-1>0
x-1>0 <=> x>1
2x-1>0 <=> 2x>1 <=> x>1/2
Vậy x>1/2

2 tháng 4 2017

\(\left(x-1\right)\left(x+1\right)-2\left(2x+3\right)\le\left(x-2\right)^2+x\)

\(\Leftrightarrow x^2-1-4x-6\le x^2-4x+4+x\)

\(\Leftrightarrow x^2-4x-7\le x^2-3x+4\)

\(\Leftrightarrow x^2-4x-x^2+3x\le7+4\)

\(\Leftrightarrow-x\le11\)

\(\Leftrightarrow x\le-11\)

2 tháng 4 2017

biết đừng đăng anh à

15 tháng 6 2020

c) \(\frac{x+1}{3}>\frac{2x-1}{6}-2\)

\(\frac{2\left(x+1\right)}{6}>\frac{2x-1-12}{6}\)

⇔2x + 2 > 2x - 13

⇔0x > -15

Vậy S=Φ

15 tháng 6 2020

b) \(\frac{x-2}{6}-\frac{x-1}{3}\le\frac{x}{2}\)

\(\frac{x-2-2\left(x-1\right)}{6}\le\frac{3x}{6}\)

⇔x - 2 - 2x +2 ≤ 3x

⇔-4x ≤ 0

⇔x ≥ 0

Vậy S={x | x ≥ 0}

17 tháng 2 2019

\(\Leftrightarrow\frac{5\left(x+5\right)-3\left(x-3\right)}{15}=\frac{5\left(x+5\right)-3\left(x-3\right)}{\left(x-3\right)\left(x+5\right)}\)

\(\Leftrightarrow\frac{2x+34}{15}=\frac{2x+34}{x^2+2x-15}\Leftrightarrow\orbr{\begin{cases}2x+34=0\\x^2+2x-15=15\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-17\\x^2+2x-30=0\end{cases}}\)

Từ đó tìm được \(S=\left\{-17;\sqrt{31}-1;-\sqrt{31}-1\right\}\)

16 tháng 4 2018

\(a)\) \(3-2x>4x+5\)

\(\Leftrightarrow\)\(3-2x+2x>4x+2x+5\)

\(\Leftrightarrow\)\(6x+5< 3\)

\(\Leftrightarrow\)\(6x+5-5< 3-5\)

\(\Leftrightarrow\)\(6x< -2\)

\(\Leftrightarrow\)\(\frac{6x}{6}< \frac{-2}{6}\)

\(\Leftrightarrow\)\(x< \frac{-1}{3}\)

Vậy \(x< \frac{-1}{3}\)

Chúc bạn học tốt ~