\(y= \dfrac{x+1}{x-1}\) b)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2022

b: Tọa độ đỉnh là:

\(\left\{{}\begin{matrix}x=\dfrac{-\left(-2\right)}{2}=1\\y=-\dfrac{\left(-2\right)^2-4\cdot1\cdot3}{4}=-\dfrac{4-12}{4}=\dfrac{-\left(-8\right)}{4}=2\end{matrix}\right.\)

=>Hàm số đồng biến khi x>1 và nghịch biến khi x<1

a: \(A=\dfrac{f\left(x_1\right)-f\left(x_2\right)}{x_1-x_2}=\left(\dfrac{x_1+1}{x_1-1}-\dfrac{x_2+1}{x_2-1}\right):\left(x_1-x_2\right)\)

\(=\dfrac{x_1x_2-x_1+x_2-1-x_1x_2+x_2-x_1+1}{\left(x_1-1\right)\left(x_2-1\right)}\cdot\dfrac{1}{x_1-x_2}\)

\(=\dfrac{-2}{\left(x_1-1\right)\left(x_2-1\right)}\)

Nếu x1<1; x2<1 thì (x1-1)(x2-1)>0

=>A<0

=>Hàm số nghịch biến

Nếu x1>1; x2>1 thì (x1-1)(x2-1)>0

=>A<0

=>Hàm số nghịch biến

24 tháng 9 2016

a) D=R

* Nếu x1;x2 \(\in\) \(\left(-\infty;0\right)\); x1\(\ne\) x2

x1> x2 thì x12+2x1+3 <  x22+2x2+3

 <=>       \(\sqrt{x_1^2+2x_1+3}< \sqrt{x_2^2+2x_2+3}\)

<=>         \(f\left(x_1\right)< f\left(x_2\right)\)

Hàm số nghịch biến

a: \(f\left(-x\right)=\dfrac{-x^5+x}{\sqrt{\left(-x\right)^2+\left|-x\right|}}=-f\left(x\right)\)

=>f(x) lẻ

b: \(f\left(-x\right)=\left(\left|9+2x\right|-\left|9-2x\right|\right)\left(-x+5x^3\right)\)

\(=f\left(x\right)\)

=>f(x) chẵn

c: \(f\left(-x\right)=\dfrac{\left|3+x\right|-\left|3-x\right|}{\left(-x\right)^4+1}=-f\left(x\right)\)

=>f(x) lẻ

25 tháng 7 2019

Cho  \(x_1>x_2\Leftrightarrow-x_1< -x_2\Leftrightarrow-x_1+3< -x_2+3\Leftrightarrow\frac{1}{-x_1+3}< \frac{1}{-x_2+3}\)

12 tháng 4 2017

a) hệ số a=-2=>y luôn nghịch biến

b) a=1 >0 và -b/2a =-5 => (-5;+vc) y luôn đồng biến

c) hàm y có dạng y=a/(x+1)

a =-1 => y đồng biến (-vc;-1) nghich biến (-1;+vc

=>

(-3;-2) hàm y đồng biến

(2;3) hàm y đồng biến

26 tháng 4 2017

a) Hàm số \(y=-2x+3\) có a = -2 < 0 nên hàm số nghịch biến trên R.
b. Xét tỉ số \(\dfrac{f\left(x_1\right)-f\left(x_2\right)}{x_1-x_2}=\dfrac{\left(x^2_1+10x_1+9\right)-\left(x^2_2+10x_2+9\right)}{x_1-x_2}\)
\(=\dfrac{\left(x_1-x_2\right)\left(x_1+x_2+10\right)}{x_1-x_2}=x_1+x_2+10\).
Với \(x_1;x_2\notin\left(-5;+\infty\right)\) thì \(x_1+x_2+10\ge0\) nên hàm số y đồng biến trên \(\left(-5;+\infty\right)\).
c) Xét tỉ số: \(\dfrac{f\left(x_1\right)-f\left(x_2\right)}{x_1-x_2}=\dfrac{-\dfrac{1}{x_1+1}+\dfrac{1}{x_2+1}}{x_1-x_2}=\dfrac{1}{\left(x_1+1\right)\left(x_2+1\right)}\)
Trên \(\left(-3;-2\right)\) thì \(\dfrac{1}{\left(x_1+1\right)\left(x_2+1\right)}< 0\) nên hàm số y nghịch biến trên \(\left(-3;-2\right)\).
Trên \(\left(2;3\right)\) thì \(\dfrac{1}{\left(x_1+1\right)\left(x_2+1\right)}>0\) nên hàm số y đồng biến trên \(\left(2;3\right)\).

AH
Akai Haruma
Giáo viên
30 tháng 3 2020

Lời giải:

$D=(1; +\infty)$

Ta có $y'=\frac{-3}{(x-1)^2}< 0$ với mọi $x\in (1;+\infty)$

Do đó hàm số luôn nghịch biến trên $(1;+\infty)$

23 tháng 7 2019

1. \(y=f\left(x\right)=x^2+2\left|x\right|-1\)

TXĐ: D=R

a) Xét tính chẵn lẻ

Với mọi x thuộc D => -x thuộc D

Xét : \(f\left(-x\right)=\left(-x\right)^2+2\left|-x\right|-1=x^2+2\left|x\right|-1=f\left(x\right)\)

=> y= f(x) là hàm chẵn

b)  Xét tính đồng biến, nghịch biến

Với mọi  \(x_1>x_2\)

\(f\left(x_1\right)-f\left(x_2\right)=\left(x_1^2+2\left|x_1\right|-1\right)-\left(x_2^2+2\left|x_2\right|-1\right)\)

\(=\left(x_1^2-x_2^2\right)+2\left(\left|x_1\right|-\left|x_2\right|\right)\)

+) \(x_1;x_2\in\left(0;+\infty\right)\)

\(f\left(x_1\right)-f\left(x_2\right)=\left(x_1^2-x_2^2\right)+2\left(x_1-x_2\right)=\left(x_1-x_2\right)\left(x_1+x_2+2\right)>0\)

=> \(f\left(x_1\right)>f\left(x_2\right)\)

=> Hàm số đồng biến  trên \(\left(0;+\infty\right)\)

+) \(x_1;x_2\in\left(-\infty;0\right)\)

\(f\left(x_1\right)-f\left(x_2\right)=\left(x_1^2-x_2^2\right)+2\left(-x_1+x_2\right)=\left(x_1-x_2\right)\left(x_1+x_2-2\right)< 0\)

=> \(f\left(x_1\right)< f\left(x_2\right)\)

> Hàm số nghịch biến trên \(\left(-\infty;0\right)\)

2.

 \(y=f\left(x\right)=x+\frac{1}{x}\)

TXD: D=R\{0}

a) Xét tính chẵn lẻ.

Với mọi x thuộc D => -x thuộc D

Có \(f\left(-x\right)=-x+\frac{1}{-x}=-\left(x+\frac{1}{x}\right)=-f\left(x\right)\)

=> y= f(x) là hàm lẻ

Em tự làm tiếp nhé. Tương tự như trên

10 tháng 7 2017

bài 2

f(x) =|...|

ghép g(x) =x^2 -2x-3

và -(x^2 -2x-3)

Chương 4: BẤT ĐẲNG THỨC, BẤT PHƯƠNG TRÌNH

m<0 vô nghiệm

m=0 2 nghiệm

m=4 3 nghiệm

0<n<4 4 nghiệm