Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4.
Gọi M là trung điểm CD, qua M kẻ đường thẳng song song AB
Gọi N là trung điểm AB, qua N kẻ đường thẳng song song AM
Gọi giao của 2 đường thẳng trên là O \(\Rightarrow\) O là tâm (S)
\(\Rightarrow AO=R=\sqrt{3}\)
Đặt \(AB=x;AC=y;AD=z\)
\(AN=\frac{AB}{2}=\frac{x}{2}\) ; \(AM=\frac{CD}{2}=\frac{1}{2}\sqrt{AC^2+AD^2}=\frac{1}{2}\sqrt{y^2+z^2}\)
Áp dụng Pitago: \(AO^2=AN^2+AM^2\)
\(\Rightarrow\frac{x^2}{4}+\frac{1}{4}\left(y^2+z^2\right)=3\Rightarrow x^2+y^2+z^2=12\)
\(V=\frac{1}{3}xyz\le\frac{1}{3}\left(\frac{x+y+z}{3}\right)^3\le\frac{1}{3}\left(\frac{\sqrt{3\left(x^2+y^2+z^2\right)}}{3}\right)^3=\frac{8}{3}\)
2.
Gọi O là tâm đáy \(\Rightarrow SO\perp\left(ABCD\right)\)
\(AC=a\sqrt{2}\Rightarrow AO=\frac{1}{2}AC=\frac{a\sqrt{2}}{2}\)
\(SO=\sqrt{SA^2-OA^2}=\frac{a}{2}\)
Áp dụng công thức từ câu 1:
\(R=\frac{SA^2}{2SO}=\frac{3a}{4}\)
3.
\(BC=AB\sqrt{2}=2a\)
Gọi H là hình chiếu của S lên (ABC) \(\Rightarrow\) H đồng thời là tâm đường tròn ngoại tiếp đáy
\(\Rightarrow\) H là trung điểm BC
\(\Rightarrow\widehat{SAH}=60^0\Rightarrow SH=AH.tan60^0=\frac{BC}{2}tan60^0=a\sqrt{3}\)
\(SA=\frac{AH}{cos60^0}=2a\)
\(\Rightarrow R=\frac{SA^2}{2SH}=\frac{2\sqrt{3}a}{3}\)
\(S=4\pi R^2=\frac{16\pi a^2}{3}\)
Nhìn nhiều con số to thế này làm biếng tính toán ra quá, bạn có tính ra được tính chất đặc biệt nào của tứ diện này không? Ví dụ có cặp cạnh nào vuông góc, hoặc bằng nhau, hoặc đường thẳng đi qua trung điểm hay trọng tâm nào không?
Lời giải:
a)
Kẻ \(AH\perp CD\). Do tam giác $ACD$ cân tại $A$ nên $H$ là trung điểm của $CD$.
Tam giác $BCD$ có $BC=BD$ nên là tam giác cân, do đó \(BH\perp CD\)
Xét thấy \(\left\{\begin{matrix} AH\perp CD\\ BH\perp CD\end{matrix}\right.\Rightarrow (AHB)\perp CD\Rightarrow AB\perp CD\)
b)
Có \(\left\{\begin{matrix} AH\perp CD\\ AH\perp BH\end{matrix}\right.\Rightarrow AH\perp (BCD)\) hay $AH$ là đường cao hạ từ $A$ của tứ diện $ABCD$
Tam giác \(ACD\) có \(AC^2+AD^2=CD^2\Rightarrow \triangle ACD\) vuông tại $A$
\(\Rightarrow AH=CH=HD=\frac{CD}{2}=a\)
Ta cũng chứng minh được tam giác $BCD$ vuông tại $B$
Do đó, \(V_{ABCD}=\frac{1}{3}.AH.S_{BCD}=\frac{1}{3}.a.\frac{\sqrt{2}a.\sqrt{2}a}{2}=\frac{a^3}{3}\)
Chọn B
Gọi M, N lần lượt là trung điểm AD và BC.
Theo giả thiết ta có: ABD và ACD là các tam giác cân có M là trung điểm của AD nên:
Và có BM=CM => ΔMBC cân tại M
Trong tam giác ΔMBC có MN vừa là đường cao vừa là trung tuyến nên
Khi đó diện tích tam giác ΔMBC là:
Thể tích tứ diện ABCD là:
Đặt AD=x, BC=y ta có:
Dấu bằng xảy ra khi x=y.
Ta lại có:
Dấu bằng xảy ra khi:
Vậy giá trị lớn nhất của thể tích khối tứ diện ABCD là: