Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Cách 1: Ta có:
y' = 6sin5x.cosx - 6cos5x.sinx + 6sinx.cos3x - 6sin3x.cosx = 6sin3x.cosx(sin2x - 1) + 6sinx.cos3x(1 - cos2x) = - 6sin3x.cos3x + 6sin3x.cos3x = 0.
Vậy y' = 0 với mọi x, tức là y' không phụ thuộc vào x.
Cách 2:
y = sin6x + cos6x + 3sin2x.cos2x(sin2x + cos2x) = sin6x + 3sin4x.cos2x + 3sin2x.cos4x + cos6x = (sin2x + cos2x)3 = 1
Do đó, y' = 0.
b) Cách 1:
Áp dụng công thức tính đạo hàm của hàm số hợp
(cos2u)' = 2cosu(-sinu).u' = -u'.sin2u
Ta được
y' =[sin - sin] + [sin - sin] - 2sin2x = 2cos.sin(-2x) + 2cos.sin(-2x) - 2sin2x = sin2x + sin2x - 2sin2x = 0,
vì cos = cos = .
Vậy y' = 0 với mọi x, do đó y' không phụ thuộc vào x.
Cách 2: vì côsin của hai cung bù nhau thì đối nhau cho nên
cos2 = cos2 '
cos2 = cos2 .
Do đó
y = 2 cos2 + 2cos2 - 2sin2x = 1 +cos + 1 +cos - (1 - cos2x) = 1 +cos + cos + cos2x = 1 + 2cos.cos(-2x) + cos2x = 1 + 2cos2x + cos2x = 1.
Do đó y' = 0.
Chứng minh các biểu thức đã cho không phụ thuộc vào x.
Từ đó suy ra f'(x)=0
a) f(x)=1⇒f′(x)=0f(x)=1⇒f′(x)=0 ;
b) f(x)=1⇒f′(x)=0f(x)=1⇒f′(x)=0 ;
c) f(x)=\(\frac{1}{4}\)(\(\sqrt{2}\)-\(\sqrt{6}\))=>f'(x)=0
d,f(x)=\(\frac{3}{2}\)=>f'(x)=0
Bài 3. a) cos (x - 1) = ⇔ x - 1 = ±arccos + k2π
⇔ x = 1 ±arccos + k2π , (k ∈ Z).
b) cos 3x = cos 120 ⇔ 3x = ±120 + k3600 ⇔ x = ±40 + k1200 , (k ∈ Z).
c) Vì = cos nên ⇔ cos() = cos ⇔ = ± + k2π ⇔
d) Sử dụng công thức hạ bậc (suy ra trực tiếp từ công thức nhan đôi) ta có
⇔ ⇔
⇔ ⇔
\(\cos\left(\dfrac{3}{2}x\right)\cdot\cos\left(\dfrac{x}{2}\right)=\dfrac{1}{2}\left[\cos\left(\dfrac{3}{2}x-\dfrac{1}{2}x\right)+\cos\left(\dfrac{3}{2}x+\dfrac{1}{2}x\right)\right]\)
\(=\dfrac{1}{2}\cdot\left[\cos x+\cos2x\right]\)
\(=\dfrac{1}{2}\cos x+\dfrac{1}{2}\cos2x\)
=>Hàm só tuần hoàn theo chu kì T=BCNN(T1,T2)
\(T1=\dfrac{2\Pi}{1}=2\Pi\)
\(T2=\dfrac{2\Pi}{2}=\Pi\)
\(T=BCNN\left(T1,T2\right)=2\Pi\)