Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Ta có = 22 +2.2 +4 = 12.
Vì nên hàm số y = g(x) gián đoạn tại x0 = 2.
b) Để hàm số y = f(x) liên tục tại x0 = 2 thì ta cần thay số 5 bởi số 12
![](https://rs.olm.vn/images/avt/0.png?1311)
Bạn viết lại đề được ko? Ko hiểu \(\frac{x'+x}{x}\) với \(x\ne0\) là gì
Các câu dưới cũng có kí hiệu này, chắc bạn viết nhầm sang kí hiệu nào đó, nó cũng ko phải kí hiệu đạo hàm
![](https://rs.olm.vn/images/avt/0.png?1311)
a) f(x) liên tục tại x0 = -2
Vì \(\lim\limits_{x\rightarrow-2}f\left(x\right)=f\left(-2\right)=25\)
b) Có: \(\lim\limits_{x\rightarrow\frac{1}{2}}f\left(x\right)=\lim\limits_{x\rightarrow\frac{1}{2}}\frac{\left(2x-1\right)\left(2x+1\right)}{2x-1}=\lim\limits_{x\rightarrow\frac{1}{2}}\left(2x+1\right)=2\)
mà \(f\left(\frac{1}{2}\right)=3\)
=> \(\lim\limits_{x\rightarrow\frac{1}{2}}f\left(x\right)\ne f\left(\frac{1}{2}\right)\)
=> f(x) gián đoạn tại x0 = 1/2
c) \(\lim\limits_{x\rightarrow2-}f\left(x\right)=\lim\limits_{x\rightarrow2-}=\lim\limits_{x\rightarrow2-}\left(2x^2+x-1\right)=9\)
\(f\left(2\right)=3.2-5=1\)
Vì \(\lim\limits_{x\rightarrow2-}f\left(x\right)\ne f\left(2\right)\)
nên f(x) gián đoạn tại x0 = 2
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\lim\limits_{x\rightarrow0}\left|f\left(x\right)\right|=\lim\limits_{x\rightarrow0}\left|x^2sin\dfrac{1}{x}\right|< \lim\limits_{x\rightarrow0}\left|x^2\right|=0\).
Vậy \(\lim\limits_{x\rightarrow0}f\left(x\right)=0\).
\(f\left(0\right)=A\).
Để hàm số liên tục tại \(x=0\) thì \(\lim\limits_{x\rightarrow0}f\left(x\right)=f\left(0\right)\Leftrightarrow A=0\).
Để xét hàm số có đạo hàm tại \(x=0\) ta xét giới hạn:
\(\lim\limits_{x\rightarrow0}\dfrac{f\left(x\right)-f\left(0\right)}{x-0}=\lim\limits_{x\rightarrow0}\dfrac{x^2sin\dfrac{1}{x}}{x}=\lim\limits_{x\rightarrow0}xsin\dfrac{1}{x}=0\).
Vậy hàm số có đạo hàm tại \(x=0\).
![](https://rs.olm.vn/images/avt/0.png?1311)
a/ \(\lim\limits_{x\rightarrow\sqrt{2}}f\left(x\right)=\lim\limits_{x\rightarrow\sqrt{2}}\frac{\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)}{x-\sqrt{2}}=\lim\limits_{x\rightarrow\sqrt{2}}\left(x+\sqrt{2}\right)=2\sqrt{2}\)
\(\Rightarrow\lim\limits_{x\rightarrow\sqrt{2}}f\left(x\right)=f\left(\sqrt{2}\right)\Rightarrow\) hàm số liên tục tại \(x=\sqrt{2}\)
b/ \(\lim\limits_{x\rightarrow5^+}f\left(x\right)=\lim\limits_{x\rightarrow5^+}\frac{x-5}{\sqrt{2x-1}-3}=\frac{\left(x-5\right)\left(\sqrt{2x-1}+3\right)}{2\left(x-5\right)}=\lim\limits_{x\rightarrow5^+}\frac{\sqrt{2x-1}+3}{2}=3\)
\(f\left(5\right)=\lim\limits_{x\rightarrow5^-}f\left(x\right)=\lim\limits_{x\rightarrow5^-}\left[\left(x-5\right)^2+3\right]=5\)
\(\Rightarrow\lim\limits_{x\rightarrow5^+}f\left(x\right)=\lim\limits_{x\rightarrow5^-}f\left(x\right)=f\left(5\right)\Rightarrow\) hàm số liên tục tại \(x=5\)
\(\lim\limits_{x\rightarrow5}f\left(x\right)=\lim\limits_{x\rightarrow5}\dfrac{\sqrt{2x-9}-1}{5-x}\)
\(=\lim\limits_{x\rightarrow5}\dfrac{2x-9-1}{\sqrt{2x-9}+1}\cdot\dfrac{1}{5-x}\)
\(=\lim\limits_{x\rightarrow5}\dfrac{2\left(x-5\right)}{-\left(x-5\right)\left(\sqrt{2x-9}+1\right)}\)
\(=\lim\limits_{x\rightarrow5}\dfrac{-2}{\sqrt{2x-9+1}}=\dfrac{-2}{\sqrt{10-9}+1}=-\dfrac{2}{2}=-1\)
f(5)=3
=>\(\lim\limits_{x\rightarrow5}f\left(x\right)< >f\left(5\right)\)
=>Hàm số bị gián đoạn tại x=5