\(y=\sqrt{x-2}+\sqrt{4-x}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
8 tháng 6 2018

Lời giải:

MXĐ: \(x\in [2;4]\)

Ta có với \(x\neq 2; x\neq 4\) thì:

\(y'=(\sqrt{x-2}+\sqrt{4-x})'=\frac{1}{2\sqrt{x-2}}-\frac{1}{2\sqrt{4-x}}\)

\(y'=0\Leftrightarrow \sqrt{4-x}=\sqrt{x-2}\Leftrightarrow x=3\)

Lập bảng biến thiên ta suy ra hàm số đồng biến trên \((2;3)\), nghịch biến trên \((3,4)\)

AH
Akai Haruma
Giáo viên
8 tháng 6 2018

Bảng biến thiên:

§1. Sự đồng biến và nghịch biến của hàm số

23 tháng 5 2017

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

4 tháng 5 2016

Tập xác định \(D=R\)

Ta có : \(y'=3^x\ln3\left(\sqrt{x^2+1}-x\right)+3^x\left(\frac{x}{\sqrt{x^2+1}}-1\right)\)

                \(=3^x\left(\sqrt{x^2+1}-x\right)\left(\ln3-\frac{1}{\sqrt{x^2+1}}\right)\)

Ta có : \(\begin{cases}\sqrt{x^2+1}-x>\sqrt{x^2-x}\ge0\\\ln3>1>\frac{1}{\sqrt{x^2+1}}\Rightarrow\ln3-\frac{1}{\sqrt{x^2+1}}>0\end{cases}\)

             \(\Rightarrow y'>0\) với mọi x

Vậy hàm số đồng biến trên R

20 tháng 10 2021

Tập xác định: D=\(\left[-2\sqrt{2};2\sqrt{2}\right]\).

\(y'=1-\dfrac{x}{\sqrt{8-x^2}}\) = 0 \(\Rightarrow\) x=2.

Bảng biến thiên:

undefined

Vậy hàm số đã cho đồng biến trên khoảng (\(-2\sqrt{2}\);2), nghịch biến trên khoảng (2;\(2\sqrt{2}\)) và y=4 (tại x=2).

Tham khảo: Đồ thị:

undefined

3 tháng 8 2020

Bạn kiểm tra lại đề. Và vào hoc 24 để đăng nhé! 

Làm câu cuối:

TXĐ: \(x\in\)[ 0 ; + vô cùng ) 

\(y'=\frac{1}{2\sqrt{x}}-1=0\Leftrightarrow2\sqrt{x}=1\Leftrightarrow x=\frac{1}{4}\left(tm\right)\)

Vẽ bảng biến thiên: 

....

Từ bảng biên thiên: 

Hàm số đồng biến trong khoảng ( 0 ; 1/4 ) 

Hàm số nghịch biên trong khoảng ( 1/4 ; + dương vô cùng)

21 tháng 9 2021

guaur

6 tháng 5 2016

Tập xác định \(x< \frac{1}{2}\)

Ta có : \(y'=1-\frac{2}{1-2x}=\frac{-1-2x}{1-2x}\Rightarrow y'=0\Leftrightarrow x=-\frac{1}{2}\)

Hàm số đồng biến trên \(\left(-\infty;-\frac{1}{2}\right)\) 

Hàm số nghịch biến trên \(\left(-\frac{1}{2};\frac{1}{2}\right)\)

8 tháng 9 2023

\(f\left(x\right)=x+\sqrt[]{x^2-4}\)

\(f\left(x\right)\) xác định khi và chỉ khi

\(x^2-4\ge0\Leftrightarrow x^2\ge4\Leftrightarrow x\le-2\cup x\ge2\)

Tập xác định : \(D=(-\infty;-2]\cup[2;+\infty)\)

\(f'\left(x\right)=1+\dfrac{x}{\sqrt[]{x^2-4}}\)

\(f'\left(x\right)=0\)

\(\Leftrightarrow1+\dfrac{x}{\sqrt[]{x^2-4}}=0\)

\(\Leftrightarrow\dfrac{\sqrt[]{x^2-4}+x}{\sqrt[]{x^2-4}}=0\)

\(\Leftrightarrow\sqrt[]{x^2-4}+x=0\left(x< -2;x>2\right)\)

Theo bất đẳng thức Bunhiacopxki:

\(\left(1.\sqrt[]{x^2-4}+1.x\right)^2\le2\left(2x^2+4\right)=4\left(x^2+2\right)\)

\(pt\Leftrightarrow4\left(x^2+2\right)=0\left(vô.lý\right)\)

\(\Rightarrow\) phương trình vô nghiệm

8 tháng 9 2023

Tiếp tục bài giải, mình nhấn nút gửi

\(...\Rightarrow f'\left(x\right)>0,\forall x\in D\)

\(\Rightarrow f\left(x\right)\) luôn luôn tăng trên tập xác định D.

6 tháng 5 2016

Ta có :\(y'=\left(6x-2\right)e^{3x^2-2x-x}\)

Hàm đồng biến trên \(\left(\frac{1}{3};+\infty\right)\)

Hàm nghịch biến trên \(\left(-\infty;\frac{1}{3}\right)\)

25 tháng 8 2016

Xét tính chẵn lẻ:

a) TXĐ: D = R \ {π/2 + kπ| k nguyên}

Với mọi x thuộc D ta có (-x) thuộc D và

\(f\left(-x\right)=\frac{3\tan^3\left(-x\right)-5\sin\left(-x\right)}{2+\cos\left(-x\right)}=-\frac{3\tan^3x-5\sin x}{2+\cos x}=-f\left(x\right)\)

Vậy hàm đã cho là hàm lẻ

b) TXĐ: D = R \ \(\left\{\pm\sqrt{2};\pm1\right\}\)

Với mọi x thuộc D ta có (-x) thuộc D và

\(f\left(-x\right)=\frac{\sin\left(-x\right)}{\left(-x\right)^4-3\left(-x\right)^2+2}=-\frac{\sin x}{x^4-3x^2+2}=-f\left(x\right)\)

Vậy hàm đã cho là hàm lẻ

 

25 tháng 8 2016

Tìm GTLN, GTNN:

TXĐ: D = R

a)  Ta có (\(\left(\sin x+\cos x\right)^2=1+\sin2x\)

Với mọi x thuộc D ta có\(-1\le\sin2x\le1\Leftrightarrow0\le1+\sin2x\le2\Leftrightarrow0\le\left(\sin x+\cos x\right)^2\le2\)

\(\Leftrightarrow0\le\left|\sin x+\cos x\right|\le\sqrt{2}\Leftrightarrow-\sqrt{2}\le\sin x+\cos x\le\sqrt{2}\)

Vậy  \(Min_{f\left(x\right)}=-\sqrt{2}\) khi \(\sin2x=-1\Leftrightarrow2x=-\frac{\pi}{2}+k2\pi\Leftrightarrow x=-\frac{\pi}{4}+k\pi\)

\(Max_{f\left(x\right)}=\sqrt{2}\) khi\(\sin2x=1\Leftrightarrow x=\frac{\pi}{4}+k\pi\)

b) Với mọi x thuộc D ta có: 

\(-1\le\cos x\le1\Leftrightarrow-2\le2\cos x\le2\Leftrightarrow1\le2\cos x+3\le5\)

\(\Leftrightarrow1\le\sqrt{2\cos x+3}\le\sqrt{5}\Leftrightarrow5\le\sqrt{2\cos x+3}+4\le\sqrt{5}+4\)

Vậy\(Min_{f\left(x\right)}=5\)  khi \(\cos x=-1\Leftrightarrow x=\pi+k2\pi\)

\(Max_{f\left(x\right)}=\sqrt{5}+4\)  khi \(\cos x=1\Leftrightarrow x=k2\pi\)

c) \(y=\sin^4x+\cos^4x=\left(\sin^2x+\cos^2x\right)^2-2\sin^2x\cos^2x\)\(=1-\frac{1}{2}\left(2\sin x\cos x\right)^2=1-\frac{1}{2}\sin^22x\)

Với mọi x thuộc D ta có: \(0\le\sin^22x\le1\Leftrightarrow-\frac{1}{2}\le-\frac{1}{2}\sin^22x\le0\Leftrightarrow\frac{1}{2}\le1-\frac{1}{2}\sin^22x\le1\)

Đến đây bạn tự xét dấu '=' xảy ra khi nào nha :p