\(\sqrt{x-4}-\sqrt{x+1}\) trên (4;
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 9 2020

de qua de

18 tháng 9 2020

kệ mày

19 tháng 9 2020

tôi ko trả lời được vì tôi lớp 6 thôi

14 tháng 10 2020

a, Lấy \(x_1;x_2\in R\left(x_1\ne x_2\right)\)

Ta có \(y_1-y_2=3x_1-3x_2\Rightarrow I=\frac{y_1-y_2}{x_1-x_2}=3>0\)

\(\Rightarrow\) Hàm số đồng biến trên R

b, Lấy \(x_1;x_2\in\left(0;+\infty\right)\left(x_1\ne x_2\right)\)

Ta có \(y_1-y_2=\sqrt{x_1}-\sqrt{x_2}=\frac{x_1-x_2}{\sqrt{x_1}+\sqrt{x_2}}\)

\(\Rightarrow I=\frac{y_1-y_2}{x_1-x_2}=\frac{1}{\sqrt{x_1}+\sqrt{x_2}}>0\)

\(\Rightarrow\) Hàm số đồng biến trên \(\left(0;+\infty\right)\)

14 tháng 10 2020

d, Lấy \(x_1;x_2\in\left(-\infty;-1\right)\left(x_1\ne x_2\right)\)

\(\Rightarrow y_1-y_2=\frac{4}{x_1+1}-\frac{4}{x_2+1}=-\frac{4\left(x_1-x_2\right)}{\left(x_1+1\right)\left(x_2+1\right)}\)

\(\Rightarrow I=\frac{y_1-y_2}{x_1-x_2}=-\frac{4}{\left(x_1+1\right)\left(x_2+1\right)}\)

Do \(x_1;x_2\in\left(-\infty;-1\right)\Rightarrow\left(x_1+1\right)\left(x_2+1\right)>0\)

\(\Rightarrow I=-\frac{4}{\left(x_1+1\right)\left(x_2+1\right)}< 0\)

\(\Rightarrow\) Hàm số nghịch biến trên \(\left(-\infty;-1\right)\)

Lấy \(x_1;x_2\in\left(-1;+\infty\right)\left(x_1\ne x_2\right)\)

Do \(x_1;x_2\in\left(-1;+\infty\right)\Rightarrow\left(x_1+1\right)\left(x_2+1\right)>0\)

\(\Rightarrow I=-\frac{4}{\left(x_1+1\right)\left(x_2+1\right)}< 0\)

\(\Rightarrow\) Hàm số nghịch biến trên \(\left(-1;+\infty\right)\)

2 tháng 8 2018

1)\(\forall x1,x2\in\left(1,+\infty\right),x1\ne x2\)

\(f\left(x1\right)-f\left(x2\right)=\dfrac{1}{1-x1}-\dfrac{1}{1-x2}=\dfrac{1-x2-1+x1}{\left(1-x1\right)\left(1-x2\right)}=\dfrac{x1-x2}{\left(1-x1\right)\left(1-x2\right)}\)

\(\dfrac{f\left(x1\right)-f\left(x2\right)}{x1-x2}=\dfrac{\dfrac{x1-x2}{\left(1-x1\right)\left(1-x2\right)}}{x1-x2}=\dfrac{1}{\left(1-x1\right)\left(1-x2\right)}\)

\(x1,x2\in\left(1;+\infty\right)\)nên \(\left\{{}\begin{matrix}x1>1\\x2>1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}1-x1< 0\\1-x2< 0\end{matrix}\right.\) \(\Rightarrow\dfrac{1}{\left(1-x1\right)\left(1-x2\right)}>0\)

Vậy hàm số đồng biến trên \(\left(1;+\infty\right)\)

20 tháng 9 2017

Akai và Ace giúp dùm mình đi