K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 12 2017

đặt \(f\left(x\right)=\left|x\right|.x^3\)

ta có hàm số \(f\left(x\right)\) có tập xác định \(D=R\) \(\Rightarrow\) \(\forall x\in D\) thì \(-x\in D\)

ta có : \(f\left(-x\right)=\left|-x\right|.\left(-x\right)^3=\left|x\right|.\left(-x\right)^3=-\left|x\right|.x^3=-f\left(x\right)\)

vậy hàm số \(f\) là hàm số lẽ

NV
18 tháng 9 2019

a/ \(f\left(-x\right)=\left(-x\right)^2+3\left(-x\right)^4=x^2+3x^4=f\left(x\right)\)

Hàm chẵn

b/ \(f\left(-x\right)=\left(-x\right)^3+3\left(-x\right)=-x^3-3x=-\left(x^3+3x\right)=-f\left(x\right)\)

Hàm lẻ

c/ \(f\left(-x\right)=-2\left(-x\right)^4+\left(-x\right)^2-1=-2x^4+x^2-1=f\left(x\right)\)

Hàm chẵn

d/ \(f\left(1\right)=6\); \(f\left(-1\right)=-2\ne f\left(1\right)\ne-f\left(1\right)\)

Hàm ko chẵn ko lẻ

e/ Tương tự câu trên, hàm ko chẵn ko lẻ

f/ \(f\left(-x\right)=\frac{2\left(-x\right)^2-4}{-x}=\frac{2x^2-4}{-x}=-\left(\frac{2x^2-4}{x}\right)=-f\left(x\right)\)

Hàm lẻ trong miền xác định

4 tháng 7 2018

\(a)3^5.3.3^{10}:3^{15}=3^{5+1+10-15}=3\)

\(b)4^8.2^5.8^3=\left(2^2\right)^8.2^5.\left(2^3\right)^3=2^{16}.2^5.2^9=2^{16+5+9}=2^{30}\)

\(c)16^2:4^3=\left(4^2\right)^2:4^3=4^4:4^3=4\)

4 tháng 7 2018

a,x2- 22 = 32

⇔ x2=32+22

⇔ x2=36

⇔ x= \(\pm6\)

vậy x=\(\pm6\)

b,x3+ 5 =4

⇔ x3=4-5

⇔ x3=-1

⇔ x=-1

vậy x=-1

c, x3- 4.x= 0

⇔ x(x2-4)=0

⇔ x(x-2)(x+2)=0

\(\left[{}\begin{matrix}x=0\\x-2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)

vậy .....

13 tháng 4 2016

a) Tập xác định của y = f(x) = |x| là D = R.

∀x ∈ R => -x ∈ R

f(- x) = |- x| = |x| = f(x)

Vậy hàm số y = |x| là hàm số chẵn.

b) Tập xác định của

y = f(x) = (x + 2)2 là R.

x ∈ R => -x ∈ R

f(- x) = (- x + 2)2 = x2 – 4x + 4 ≠ f(x)

f(- x) ≠ – f(x) = – x2 – 4x – 4

Vậy hàm số y = (x + 2)2 không chẵn, không lẻ.

c)         D = R, x ∈ D => -x ∈ D

f(– x) = (– x3) + (– x) = – (x3 + x) = – f(x)

Vậy hàm số đã cho là hàm số lẻ.

d) Hàm số không chẵn cũng không lẻ.

Trả lời:    f(3) = 4;    f(- 1) = – 1;   f(2) = 3.

NV
16 tháng 9 2020

Cả 2 hàm đều xác định trên R

a/ \(y\left(-x\right)=\left(-x\right)^3=-x^3=-y\left(x\right)\)

Hàm lẻ

b/ \(y\left(-x\right)=\left|-x\right|=\left|x\right|=y\left(x\right)\)

Hàm chẵn

27 tháng 4 2020

Ta thấy muốn loại bỏ đi mẫu số của \(\frac{a^2}{b+2c}\)thì cần dùng AM-GM cho nó và 1 đại lượng có dạng k(b+2c) (để triệt tiêu đi b+2c). Ngoài ra ta cần chú ý thêm BĐT đã cho có dấu "=" xảy ra <=> a=b=c. Khi ấy \(\frac{a^2}{b+2c}=\frac{b+2c}{9}\)

Do vậy, đánh giá mà ta nên chọn là:

\(\frac{a^2}{b+2c}+\frac{b+2c}{9}\ge2\sqrt{\frac{a^2}{b+2c}+\frac{b+2c}{9}}=\frac{2}{3}a\)

=> \(\frac{a^2}{b+2c}\ge\frac{2}{3}a-\frac{b+2c}{9}=\frac{6a-b-2c}{9}\)

Thực hiện đánh giá tương tự ta cũng có:

\(\frac{b^2}{c+2a}\ge\frac{6b-c-2a}{9};\frac{c^2}{a+2b}\ge\frac{6c-a-2b}{9}\)

Cộng theo vế của 3 BĐT ta được đpcm

7 tháng 7 2019

a) \(\left(x-4\right)\left(x-5\right)\left(x-6\right)\left(x-7\right)=1680\\ \Leftrightarrow\left(x-4\right)\left(x-7\right)\left(x-5\right)\left(x-6\right)=1680\\ \Leftrightarrow\left(x^2-11x+28\right)\left(x^2-11x+30\right)=1680\\ \Leftrightarrow\left(x^2-11x+29-1\right)\left(x^2-11x+29+1\right)=1680\\ \)

Đặt \(x^2-11x+29=t\), ta đc \(\left(t-1\right)\left(t+1\right)=1680\\ \Leftrightarrow t^2-1=1680\Leftrightarrow t^2=1681\Leftrightarrow t=\pm41\)

Với \(t=41\Leftrightarrow x^2-11x+28=40\Leftrightarrow\left[{}\begin{matrix}x=12\\x=-1\end{matrix}\right.\)

Với \(t=-41\Leftrightarrow x^2-11x+30=-40\)(vô no)

Vậy.....

7 tháng 7 2019

c) \(x^4-7x^3+14x^2-7x+1=0\\ \Leftrightarrow x^2-7x+14-\frac{7}{x}+\frac{1}{x^2}=0\)

\(\Leftrightarrow\left(x^2+\frac{1}{x^2}\right)-7\left(x+\frac{1}{x}\right)+14=0\)

Đặt \(x+\frac{1}{x}=t\Rightarrow x^2+\frac{1}{x^2}=t^2-2\)

Ta đc \(t^2-2-7t+14=0\Leftrightarrow t^2-7t+12=0\)

\(\Rightarrow\left[{}\begin{matrix}t=4\\t=3\end{matrix}\right.\)

B tự giải tiếp nha

16 tháng 4 2020

UK F(X) BAN G F(X)