Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Khái niệm hàm số chẵn, hàm số lẻ
Cho hàm số y=f(x) có tập xác định D.
• Hàm số f được gọi là hàm số chẵn nếu với ∀x∈D thì −x∈D và f(x)=f(−x)
• Hàm số f được gọi là hàm số lẻ nếu với ∀x∈D thì −x∈D và f(x)=−f(−x)
Chú ý: Một hàm số có thể không chẵn cũng không lẻ.
2. Đồ thị của hàm số chẵn, hàm số lẻ
• Đồ thị của hàm số chẵn nhận trục tung làm trục đối xứng.
• Đồ thị của hàm số lẻ nhận gốc toạ độ làm tâm đối xứng.
3. Phương pháp xét tính chẵn, lẻ của hàm số
Cho hàm số y=f(x)y=f(x) xác định trên DD
• f là hàm số chẵn ⇔{∀x∈D⇒−x∈Df(−x)=f(x)
• f là hàm số lẻ ⇔{∀x∈D⇒−x∈Df(−x)=−f(x)
Các bước xét tính chẵn, lẻ của hàm số:
• Bước 1. Tìm tập xác định DD của hàm số.
• Bước 2. Kiểm tra:
+ Nếu ∀x∈D⇒−x∈D∀x∈D⇒−x∈D thì chuyển qua bước 3.
+ Nếu tồn tại x0∈Dx0∈D mà −x0∉D−x0∉D thì kết luận hàm không chẵn cũng không lẻ.
• Bước 3. Xác định f(−x)f(−x) và so sánh với f(x):f(x):
+ Nếu f(−x)=f(x) thì kết luận hàm số là chẵn.
+ Nếu f(−x)=−f(x) thì kết luận hàm số là lẻ.
#)Bạn tham khảo nhé :
https://www.nguyentheanh.org/ly-thuyet-va-bai-tap-ve-ham-bac-hai-y-ax2-bx-c-a-%E2%89%A0-0-toan-lop-10/
P/s : Mình k hiểu rõ mấy về toán lớp 10 nhưng được thì bạn cứ tham khảo nhé ^^
Xét tính chẵn lẻ của hàm số: y=ax2 + bx + c
Bạn tham Khảo :
BL
y = √x
TXĐ: D = [0; +∞) ⇒ x ∈ D thì -x ∉ D
Vậy hàm số trên không là hàm số chẵn cũng không là hàm số lẻ.
Tập xác định D = R và ∀ x ∈ D có -x ∈ D và f(-x) = -2 = f(x)
Hàm số là hàm số chẵn
TXĐ: D=R
\(y\left(-x\right)=\left(-x\right)^3-5\left(-x\right)=-x^3+5x=-\left(x^3-5x\right)=-y\left(x\right)\)
\(\Rightarrow\) Hàm lẻ
y = f(x) = 3x2 – 2
TXĐ:D = R ⇒ x ∈ D thì-x ∈ D
Ta có: f(-x) = 3(-x)2 – 2 = 3x2 – 2 = f(x)
Vậy hàm số y = f(x) = 3x2 – 2 là hàm số chẵn
y = f(x) = 1/x
TXĐ: D = R \{0} ⇒ x ∈ D thì-x ∈ D
f(-x) = 1/(-x) = -1/x = -f(x)
Vậy y = f(x) = 1/x là hàm số lẻ.
không chẵn không lẻ nhé
Hàm xác định trên R
\(f\left(-x\right)=0=f\left(x\right)\Rightarrow\) hàm chẵn
\(f\left(-x\right)=0=-0=-f\left(x\right)\Rightarrow\) hàm lẻ
\(\Rightarrow\) Hàm vừa chẵn vừa lẻ