Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do 2n+1 là số chính phương lẻ nên 2n+1 : 8 dư 1
=> 2n chia hết cho 8
=> n chia hết cho 4
=> n chẵn
=> 3n chẵn
=> 3n+1 lẻ
=> 3n+1 chia 8 dư 1
=> 3n chia hết cho 8
=> n chia hết cho 8 (1)
Có: 3n+1 là số chính phương => 3n+1 chia 5 dư 0;1;4
=> 3n chia 5 dư 4;3 hoặc chia hết cho 5
=> n chia 5 dư 3;1 hoặc chia hết cho 5
- Xét n : 5 dư 3 => 2n+1 chia 5 dư 2 (Loại)
- Xét n : 5 dư 1 => 2n+1 chia 5 dư 3 (Loại)
- Xét n chia hết cho 5 => 2n+1 chia 5 dư 1 (Thỏa mãn)
=> n chia hết cho 5 (2)
Từ (1) và (2) suy ra n chia hết cho 40
Ta tìm được n=40 để 2n+1 và 3n+1 đều là số chính phương
a) \(n^2+2n+12\) là số chính phương nên \(n^2+2n+12=m^2\ge0\)
Xét m = 0 thì \(n^2+2n+12=0\) (1)
Đặt \(\Delta=b^2-4ac=2^2-4.1.12< 0\)
Do \(\Delta< 0\) nên (1) vô nghiệm (*)
Mặt khác n là số tự nhiên nên \(n^2+2n+12\) là số tự nhiên nên \(m\ge1\)
Xét \(n^2+2n+12\ge1\Leftrightarrow n^2+2n+11\ge0\) (2)
Đặt \(\Delta=b^2-4ac=2^2-4.1.11< 0\)
Do \(\Delta< 0\) nên (2) vô nghiệm (**)
Từ (*) và (**),ta dễ dàng suy ra không có số n nào thỏa mãn \(n^2+2n+12\) là số chính phương (không chắc)
p nguyên tố p>3
=>p có dạng 6m+1 và 6m-1
Thay vào p^2+2012 chứng minh nó là hợp số nữa là xong bạn à.
Nếu thấy bài làm của mình đúng thì tick nha bạn.Cảm ơn bạn nhiều.
câu 1 bạn xét p là 2 số có 2 dạng là 3k+1 và 3k+2
câu 2 xét số đó là có dạng ab và xét từng tr hợp số chẵn lẻ
mik k có thời gian nên k vt đc cho bạn nên bạn tự lm nha
hộ
c: \(3^{200}=9^{100}\)
\(2^{300}=8^{100}\)
mà 9>8
nên \(3^{200}>2^{300}\)
d: \(71^{50}=5041^{25}\)
\(37^{75}=50653^{25}\)
mà 5041<50653
nên \(71^{50}< 37^{75}\)