Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(x=\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}=4-\sqrt{15}\)
Vì \(x=\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\)là nghiệm của phương trình \(ax^2+bx+1=0\)nên:
\(a\left(4-\sqrt{15}\right)^2+b\left(4-\sqrt{15}\right)+1=0\)
\(\Leftrightarrow a\left(31-8\sqrt{15}\right)+4b-\sqrt{15}b+1=0\)
\(\Leftrightarrow31a-8\sqrt{15}a+4b-\sqrt{15}b+1=0\)
\(\Leftrightarrow\sqrt{15}\left(8a+b\right)=31a+4b+1\)
Do a b, là các số hữu tỉ nên \(31a+4b+1\)và \(8a+b\) là các số hữu tỉ
\(\Rightarrow\sqrt{15}\left(8a+b\right)\)là số hữu tỉ
Do đó \(\hept{\begin{cases}8a+b=0\\31a+4b+1=0\end{cases}}\Rightarrow\hept{\begin{cases}a=1\\b=-8\end{cases}}\)
Vậy a = 1; b = -8
a) Xét phương trình thứ nhất, có \(\Delta_1=b^2-4ac\)
Xét phương trình thứ hai, có \(\Delta_2=b^2-4ca=b^2-4ac\)
Từ đó ta có \(\Delta_1=\Delta_2\), do đó, khi phương trình (1) có nghiệm \(\left(\Delta_1\ge0\right)\)thì \(\Delta_2\ge0\)dẫn đến phương trình (2) cũng có nghiệm và ngược lại.
Vậy 2 phương trình đã cho cùng có nghiệm hoặc cùng vô nghiệm.
b) Vì \(x_1,x_2\)là 2 nghiệm của phương trình (1) nên theo định lý Vi-ét, ta có \(x_1x_2=\frac{c}{a}\)
Tương tự, ta có \(x_1'x_2'=\frac{a}{c}\)
Từ đó \(x_1x_2+x_1'x_2'=\frac{c}{a}+\frac{a}{c}\)
Nếu \(\hept{\begin{cases}a>0\\c>0\end{cases}}\)hay \(\hept{\begin{cases}a< 0\\c< 0\end{cases}}\)thì \(\hept{\begin{cases}\frac{c}{a}>0\\\frac{a}{c}>0\end{cases}}\), khi đó có thể áp dụng bất đẳ thức Cô-si cho 2 số dương \(\frac{c}{a}\)và \(\frac{a}{c}\):
\(\frac{c}{a}+\frac{a}{c}\ge2\sqrt{\frac{c}{a}.\frac{a}{c}}=2\), dẫn đến \(x_1x_2+x_1'x_2'\ge2\)
Nhưng nếu \(\hept{\begin{cases}a>0\\c< 0\end{cases}}\)hay \(\hept{\begin{cases}a< 0\\c>0\end{cases}}\)thì \(\hept{\begin{cases}\frac{c}{a}< 0\\\frac{a}{c}< 0\end{cases}}\),như vậy \(\frac{c}{a}+\frac{a}{c}< 0< 2\)dẫn đến \(x_1x_2+x_1'x_2'< 2\)
Như vậy không phải trong mọi trường hợp thì \(x_1x_2+x_1'x_2'>2\)
Để 2 pt \(x^2+ax+bc=0\)(1)
và \(x^2+bc+c=0\) (2)
thì \(\hept{\begin{cases}\Delta_1=a^2-4bc\ge0\\\Delta_2=b^2-4ac\ge0\end{cases}}\)
Gọi 2 nghiệm của pt (1) là \(x_0\), \(x_1\)và 2 nghiệm của pt (2) là \(x_0\), \(x_2\)
( Nghiệm chung là \(x_0\))
Theo Vi-et , ta có :
\(\hept{\begin{cases}x_0+x_1=-a\\x_0.x_1=bc\end{cases}}\)và \(\hept{\begin{cases}x_0+x_2=-b\\x_0.x_2=ac\end{cases}}\)
Suy ra :
\(\hept{\begin{cases}\left(x_0+x_1\right)-\left(x_0+x_2\right)=\left(-a\right)-\left(-b\right)\\\frac{x_0.x_1}{x_0.x_2}=\frac{bc}{ac}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x_1-x_2=b-a\\\frac{x_1}{x_2}=\frac{b}{a}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x_1=\frac{b}{a}.x_2\\\frac{b}{a}.x_2-x_2=b-a\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x_2.\left(\frac{b}{a}-1\right)=b-a\Leftrightarrow x_2.\frac{b-a}{a}=b-a\\x_1=\frac{b}{a}.x_2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x_2=a\\x_1=b\end{cases}}\)
Vì \(x_1=b\)và \(x_0.x_1=bc\)nên \(x_0=c\)
Suy ra : \(x_0+x_1=-a\)\(\Leftrightarrow x_1+a=-x_0\)\(\Leftrightarrow x_1+x_2=-c\)
Mà \(x_1.x_2=ab\)
Suy ra : \(x_1\)và \(x_2\)là 2 nghiệm của pt : \(x^2+cx+ab=0\)
Giả sử cả 3 pt đều vô nghiệm nên denta 3 pt này đều nhỏ hơn 0 cộng 3 denta lại với nhau ta sẽ được 1 pt lớn hơn 0 vô lí nên ........................Bạn tự làm nhá