Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
sửa lại đề:(ax^2+bx+c)(x-1)=x^3+3x^2+2x-6
Ta có:(ax^2+bx+c)(x-1)=x^3+3x^2+2x+6
<=>ax^3+bx^2+cx-ax^2-bx-c=x^3+3x^2+2x+6
<=>ax^3+(b-a)x^2+(c-b)x-c=x^3+3x^2+2x+6
Áp dụng phương pháp hệ số bất định:
a=1
b-a=3=>b=4
c-b=2 =>c=6
Vậy a=1,b=4 và c=6
a) \(8x^3-18x^2+x+6\)
\(=8x^3-16x^2-2x^2+4x-3x+6\)
\(=8x^2\left(x-2\right)-2x\left(x-2\right)-3\left(x-2\right)\)
\(=\left(x-2\right)\left(8x^2-2x-3\right)\)
\(=\left(x-2\right)\left(8x^2-6x+4x-3\right)\)
\(=\left(x-2\right)\left[2x\left(4x-3\right)+\left(4x-3\right)\right]\)
\(=\left(x-2\right)\left(2x+1\right)\left(4x-3\right)\)
=> g(x) có 3 nghiệm là
x-2=0 <=> x=2
2x+1=0 <=> x=-1/2
4x-3=0 <=> x=3/4
vậy đa thức g(x) có nghiệm là x={2;-1/2;3/4}
b) tự làm đi (mk ko bt làm)
Giả sử f(0), f(1), f(2) có giá trị nguyên là m,n,p. Theo đề bài ta có
\(1\hept{\begin{cases}c=m\left(1\right)\\a+b+c=n\left(2\right)\\4a+2b+c=p\left(3\right)\end{cases}}\)
Ta lấy (3) - 2(2) + (1) vế theo vế ta được
2a = p - 2n + m
=> 2a là số nguyên
Ta lấy 4(2) - (3) - 3(1) vế theo vế ta được
2b = 4n - p - 3m
=> 2b cũng là số nguyên
\(\left\{{}\begin{matrix}\dfrac{-b}{2}=-2\\-\dfrac{b^2-4c}{4}=-6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=4\\16-4c=24\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=4\\c=-2\end{matrix}\right.\)