Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để \(\frac{n+9}{n-6}\inℕ\)
\(\Rightarrow n+9⋮n-6\)
\(\Rightarrow n-6+15⋮n-6\)
Ta có : Vì \(n-6⋮n-6\)
\(\Rightarrow15⋮n-6\)
\(\Rightarrow n-6\inƯ_{\left(15\right)}\)
\(\Rightarrow n-6\in\left\{1;3;5;15\right\}\)
Lập bảng xét các trường hợp :
\(n-6\) | \(1\) | \(3\) | \(5\) | \(15\) |
\(n\) | \(7\) | \(9\) | \(11\) | \(21\) |
Vậy \(\frac{n+9}{n-6}\inℕ\Leftrightarrow n\in\left\{7;9;11;21\right\}\)
Để \(\frac{n+9}{n-6}\)là số nguyên
\(\Rightarrow n+9⋮n-6\)
\(\Rightarrow n-6+15⋮n-6\)
Ta có :\(n-6⋮n-6\)
\(\Rightarrow15⋮n-6\)
\(\Rightarrow n-6\inƯ\left(15\right)=\left\{\mp1;\mp3;\mp5;\mp15\right\}\)
n-6 | -1 | 1 | -3 | 3 | 5 | -5 | -15 | 15 |
n | 5 | 7 | 3 | 9 | 11 | 1 | -9 | 21 |
1 ) Vì số nguyên tố chỉ có 2 ước tự nhiên là 1 và chính nó
Để \(\left(n+3\right)\left(n+1\right)\)là nguyên tố
\(\Rightarrow n+1=1,n+3\)là số nguyên tố do \(n+3>n+1\)
\(n=0\Rightarrow\left(n+3\right)\left(n+1\right)=3\)
\(\Rightarrow n=0\)( chọn )
2 ) Tổng 7a5 + 8b4 chia hết cho 9 nên 7 + a + 5 + 8 + b + 4 \(⋮\) 9 , tức là :
24 + a + b \(⋮\) 9 . Suy ra a + b \(\in\){ 3 ; 12 } .
Ta có a + b > 3 ( vì a – b = 6 ) nên a + b = 12 .
Từ a + b = 12 và a – b = 6 , ta có a = ( 12 + 6 ) : 2 = 9
Suy ra b = 3 .
Thử lại : 795 + 834 = 1629 chia hết cho 9 .
a) \(A=\frac{3n+9}{n-4}=\frac{3n-12}{n-4}+\frac{21}{n-4}=3+\frac{21}{n-4}\) nguyê
<=> n - 4 \(\in\) Ư(21) = {-21; -7; -3; -1; 1; 3; 7; 21}
<=> n \(\in\) {-17; -3; 1; 3; 5; 7; 11; 25}
Bạn tự tính giá trị với mỗi n
b) Tương tự