\(\left(2x+\frac{1}{x}\right)^{20}\)

a) Viết số hạng thứ k + 1 trong...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
6 tháng 11 2019

\(\left(x^{-4}+x^{\frac{5}{2}}\right)^{12}\) có SHTQ: \(C_{12}^kx^{-4k}.x^{\frac{5}{2}\left(12-k\right)}=C^k_{12}x^{30-\frac{13}{2}k}\)

Số hạng chứa \(x^8\Rightarrow30-\frac{13}{2}k=8\Rightarrow\) ko có k nguyên thỏa mãn

Vậy trong khai triển trên ko có số hạng chứa \(x^8\)

b/ \(\left(1-x^2+x^4\right)^{16}\)

\(\left\{{}\begin{matrix}k_0+k_2+k_4=16\\2k_2+4k_4=16\end{matrix}\right.\)

\(\Rightarrow\left(k_0;k_2;k_4\right)=\left(8;8;0\right);\left(9;6;1\right);\left(10;4;2\right);\left(11;2;3\right);\left(12;0;4\right)\)

Hệ số của số hạng chứa \(x^{16}\):

\(\frac{16!}{8!.8!}+\frac{16!}{9!.6!}+\frac{16!}{10!.4!.2!}+\frac{16!}{11!.2!.3!}+\frac{16!}{12!.4!}=...\)

c/ SHTQ của khai triển \(\left(1-2x\right)^5\)\(C_5^k\left(-2\right)^kx^k\)

Số hạng chứa \(x^4\) có hệ số: \(C_5^4.\left(-2\right)^4\)

SHTQ của khai triển \(\left(1+3x\right)^{10}\) là: \(C_{10}^k3^kx^k\)

Số hạng chứa \(x^3\) có hệ số \(C_{10}^33^3\)

\(\Rightarrow\) Hệ số của số hạng chứa \(x^5\) là: \(C_5^4\left(-2\right)^4+C_{10}^3.3^3\)

29 tháng 11 2019

em không hiểu phần b ạ

18 tháng 5 2017

Tổ hợp - xác suất

3 tháng 8 2018

ta có : \(\left(2nx+\dfrac{1}{2nx^2}\right)^{3n}=\sum\limits^{3n}_{k=0}C^k_{3n}\left(2nx\right)^{3n-k}\left(\dfrac{1}{2nx^2}\right)^k\)

\(=\sum\limits^{3n}_{k=0}C^k_{3n}2^{3n-2k}\left(n\right)^{3n-2k}\left(x\right)^{3n-3k}\)

\(\Rightarrow\) tổng hệ số bằng : \(C^0_{3n}+C_{3n}^1+C^2_{3n}+...+C^{3n}_{3n}=64\)

\(\Leftrightarrow\left(1+1\right)^{3n}=64\Leftrightarrow2^{3n}=2^6\Rightarrow n=2\)

để có số hạng không chữa \(x\) không khai triển thì \(3n-3k=0\Leftrightarrow n=k\)

\(\Rightarrow\) hệ số của số hạng không chữa \(x\)\(C^2_6.2^2.2^2=240\)

vậy ...........................................................................................................................

13 tháng 11 2019

Mysterious Person bn ơi cho mik hỏi chút nha , tại sao ở trên có

23n-2kn3n-2k mà ở dưới phần tổng hệ số í lại ko có ....Mong bn giúp mik ...

DD
22 tháng 11 2021

\({\left( {2x - \frac{1}{{\sqrt x }}} \right)^{16}} = \sum\limits_0^{16} {C_{16}^k{{\left( {2x} \right)}^k}{{\left( {\frac{{ - 1}}{{\sqrt x }}} \right)}^{16 - k}}} = \sum\limits_0^{16} {C_{16}^k{{.2}^k}.{{\left( { - 1} \right)}^{16 - k}}.{x^k}.{{\left( {{x^{\frac{{ - 1}}{2}}}} \right)}^{16 - k}}} = \sum\limits_0^{16} {C_{16}^k{2^k}.{{\left( { - 1} \right)}^{16 - k}}.{x^{\frac{3}{2}k - 8}}} \)

Số hạng không chứa \(x\) khi: \(\frac{3}{2}k - 8 = 0 \Leftrightarrow k = \frac{{16}}{3}\)

Do đó số hạng không chứa \(x \) trong khai triển đã cho là \(0\).

19 tháng 5 2017

Số hạng thứ \(k+1\) trong khai triển là :

\(t_{k+1}=C^k_{10}x^{10-k}\left(\dfrac{2}{x}\right)^k\)

Vậy \(t_5=C^4_{10}x^{10-4}.\left(\dfrac{2}{x}\right)^4=210.x^6.\dfrac{16}{x^4}=3360x^2\)

20 tháng 12 2016

28

20 tháng 12 2016

bn giải rõ ra đi

NV
3 tháng 11 2019

\(\left(x+x^{-1}\right)^n=\sum\limits^n_{k=0}C_n^kx^k\left(x^{-1}\right)^{n-k}=\sum\limits^n_{k=0}C_n^kx^{2k-n}\)

Theo bài ra ta có: \(C_n^2-C_n^1=35\)

\(\Leftrightarrow\frac{n!}{2!\left(n-2\right)!}-\frac{n!}{\left(n-1\right)!}=35\)

\(\Leftrightarrow\frac{n\left(n-1\right)}{2}-n=35\)

\(\Leftrightarrow n^2-3n-70=0\Rightarrow n=10\)

Số hạng ko chứa x \(\Rightarrow2k-n=0\Rightarrow k=\frac{n}{2}=5\)

Số hạng đó là \(C_{10}^5\)

NV
22 tháng 11 2019

Đề bài có vấn đề bạn

\(\left(2x+\frac{1}{2}x\right)^2=\left(\frac{5}{2}x\right)^2=\frac{25}{4}x^2\)

Có đúng 1 số hạng và nó chứa x

25 tháng 11 2019

bạn ơi mình đang giải nhị thức niu- tơn không phải làm như thế làm ơn đọc đề bài