\(\Delta ABC\), có:

AB=AC=4 (gt)

\(\Rightarrow\)...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

xét tan giác ABH và ACH

AB=AC (gt)

BH=BC (gt)

AH là cạnh chung

vây tam giác ABH=ACH (c.c.c)

vậy goc AHB=AHC (2 góc tương ứng)

vì AHB+AHC=180 (kề bù)

Mà AHB=AHC

vậy AHB=AHC=180:2=90

vậy AH vuông góc với BC

vi CB vuông góc Cx (gt)

AH vuông góc BC (cmt)

vậy Cx//AH

tam giác vuông EBC có E+B=90

tam giác vuông AHB có BAH+ B=90

Vậy BAH=BEC hay BAH=AEC

24 tháng 3 2020

d)  Gọi M là giao điểm của HA và KI 

\(\Delta\)HKB = \(\Delta\)HIC ( theo c) 

=> ^BHK = ^CHI mà ^BHA = ^CHA = 90 độ ( AH vuông BC tại H )

=> ^BHA - ^BHK = ^CHA - ^CHI 

=> KHA = ^IHA hay ^KHM = ^IHM (1)

Xét \(\Delta\)IHM và \(\Delta\)KHM có: HK = HI ( \(\Delta\)HKB = \(\Delta\)HIC ) ; ^KHM = ^IHM ( theo (1)) ; HM chung 

=> \(\Delta\)IHM = \(\Delta\)KHM 

=> ^HMK = ^HMI mà ^HMK + ^HMI = 180 độ 

=> ^HMK = ^HMI = 90 độ 

hay HA vuông KI 

mà HA vuông BC 

=> KI // BC

24 tháng 3 2020

A B C H

a) Xét tam giác AHB và tam giác AHC có:
AH chung

\(\widehat{AHB}=\widehat{AHC}\left(=90^o\right)\)(do AH _|_ BC)

AB=AC (tam giác ABC cân tại A)

=> Tam giác AHB=tam giác AHC (đpcm)

b) Xét tam giác ABC cân tại A có AH là đường cao

=> AH trùng với đường trung tuyến 

=> H là trung điểm BC => HB=HC (đpcm)

Câu 1: 

a: Xét ΔABE vuông tại A và ΔHBE vuông tại H có

BE chung

góc ABE=góc HBE

Do đo: ΔABE=ΔHBE

b: Ta có:BA=BH

EA=EH
Do đó:BE là đường trung trực của AH

c: Ta có: EA=EH

mà EH<EC

nên EA<EC

7 tháng 2 2021

giúp tui với cảm ơn các bạn nhé!

20 tháng 4 2017

vì cạnh của hai tam giác không xen giữa 2 góc

20 tháng 4 2017

undefined

23 tháng 12 2019

a ) Xét \(\Delta\)ABM và \(\Delta\)ACM có :

  • AB = AC ( \(\Delta\)ABC cân tại A )
  • AM : cạnh chung
  • BÂM = CÂM ( vì AM là phân giác của BÂC )

\(\Rightarrow\)\(\Delta\)ABM = \(\Delta\)ACM ( c - g - c )

b ) Xét \(\Delta\)AHM và \(\Delta\)AKM có :

  • AM : cạnh chung
  • Góc AHM = Góc AKM ( = 90° )
  • HÂM = KÂM ( vì AM là phân giác của BÂC )

\(\Rightarrow\)\(\Delta\)AHM = \(\Delta\)AKM ( cạnh huyền - góc nhọn )

\(\Rightarrow\)AH = AK ( 2 cạnh tương ứng )

c ) Gọi O là giao điểm của AM và HK

Xét \(\Delta\)AOH và \(\Delta\)AOK có :

  • AO : cạnh chung
  • AH = AK ( cmt )
  • HÂO = KÂO ( vì AM là phân giác của BÂC )

\(\Rightarrow\)\(\Delta\)AOH = \(\Delta\)AOK ( c - g - c )

\(\Rightarrow\)AÔH = AÔK ( 2 góc tương ứng )

Mà AÔH + AÔK = 180° ( kề bù )

\(\Rightarrow\)AÔH = ÔK = 180° / 2 = 90° 

Hay AM \(\perp\)HK 

29 tháng 11 2018

A B C H D 35°

GT| \(\widehat{BAC}=90\text{°}\)
\(AH\perp BC\)tại H 
Trên đường thẳng vuông góc tại B lấy D sao cho BD = AH 
\(\widehat{BAH}=35\text{°}\)
KL | 
AB // DH 

Xét \(\Delta AHB\&\Delta DBH\) ta có :

AH = BD ( hình vẽ )

BH cạnh chung 

AB = HD ( gt )

=> \(\Delta AHB=\Delta DBH\)( c.c.c )

b) Ta có :

\(\Delta AHB=\Delta DBH\) ( cmt )

\(\Rightarrow\widehat{ABH}=\widehat{DBH}\)( 2 góc tương ứng )

mà \(\widehat{ABH}\&\widehat{DBH}\)là 2 góc SLT 

=> AB // DH
 

1. Cho \(\Delta ABC\) vuông tại A. Từ một điểm K bất kì thuộc cạnh BC vẽ KH \(\perp\) AC. Trên tia đối của tia HK lấy điểm I sao cho HI = HK. C/m: a) AB // HK b) \(\Delta AKI\) cân c) \(\widehat{BAK}=\widehat{AIK}\) d) \(\Delta AIC=\Delta AKC\) 2. Cho tam giác nhọn ABC. Vẽ ra phía ngoài \(\Delta ABC\) các tam giác đều ABD và ACE. Gọi M là giao điểm của DC và BE. C/m rằng: a) \(\Delta ABE=\Delta ADC\) b) \(\widehat{BMC}=120^0\) 3....
Đọc tiếp

1. Cho \(\Delta ABC\) vuông tại A. Từ một điểm K bất kì thuộc cạnh BC vẽ KH \(\perp\) AC. Trên tia đối của tia HK lấy điểm I sao cho HI = HK. C/m:

a) AB // HK

b) \(\Delta AKI\) cân

c) \(\widehat{BAK}=\widehat{AIK}\)

d) \(\Delta AIC=\Delta AKC\)

2. Cho tam giác nhọn ABC. Vẽ ra phía ngoài \(\Delta ABC\) các tam giác đều ABD và ACE. Gọi M là giao điểm của DC và BE. C/m rằng:

a) \(\Delta ABE=\Delta ADC\)

b) \(\widehat{BMC}=120^0\)

3. Cho \(\Delta ABC\) có CA = CB = 10cm, AB = 12cm. Kẻ CI \(\perp\) AB (I thuộc AB)

a) C/m rằng IA = IB

b) Tính độ dài CI

c) Kẻ HI \(\perp\) AC (H thuộc AC), kẻ IK \(\perp\) BC (K thuộc BC). So sánh các độ dài IH và IK.

4. Cho \(\Delta\) ABC vuông tại A có \(\widehat{B}\) = 600.Vẽ AH \(\perp\) BC (H thuộc BC)

a) So sánh AB và AC; BH và HC

b) Lấy điểm D thuộc tia đối của tia HA sao cho HD = HA. C/m: \(\Delta AHC=\Delta DHC\)

c) Tính số đo của \(\widehat{BDC}\)

3
6 tháng 5 2017

Bài 1:

Ta có hình vẽ: A B C K H I 1 1 1 a) Ta có: AB \(\perp\) AC

HK \(\perp\) AC

=> AB // HK

b) Xét 2 tam giác vuông AHK và tam giác AHI có:

HK = HI (gt)

AH là cạnh chung

=> tam giác AHK = tam giác AHI (2 cạnh góc vuông)

=> AK = AI (2 cạnh tương ứng)

=> tam giác AKI cân tại A

c) Vì AB // HK nên

góc B1 = K1 (so le trong)

mà góc K1 = góc I1 (vì tam giác AHK = tam giác AHI)

=> góc B1 = I1

Vậy góc BAK = góc AIK

d) Xét 2 tam giác vuông CHK và tam giác CHI có:

HK = HI (gt)

CH là cạnh chung

=> tam giác CHK = tam giác CHI (2 cạnh góc vuông)

=> CH = CI (2 cạnh tương ứng)

Xét 2 tam giác AIC và tam giác AKC có:

AK = AH (cmt)

CH = CI (cmt)

AC là cạnh chung

=> tam giác AIC = tam giác AKC (c-c-c)

6 tháng 5 2017

Bài 3:

Ta có hình vẽ: A B C I H K 10 10 12 a) Xét 2 tam giác vuông ACI và tam giác BCI có:

CA = CB (=10 cm)

CI là cạnh chung

=> tam giác ACI = tam giác BCI (cạnh huyền- cạnh góc vuông)

=> AI = BI (2 cạnh tương ứng)

b) Ta có: AI + BI = AB

mà AI = BI (cmt)

AB = 12 cm

=> AI = BI = \(\dfrac{12}{2}\) = 6 cm

Xét tam giác ACI vuông tại I áp dụng định lý Pytago có:

\(CA^2 = AI^2 + CI^2 \)

hay \(10^2 = 6^2 + CI^2\)

=> \(CI^2 = 10^2 - 6^2 = 100 - 36 = 64\)

=> \(CI = \) \(\sqrt{64}\) = 8

c) Xét 2 tam giác vuông AHI và tam giác BKI có:

AI = BI (cmt)

góc A = góc B (vì tam giác ACI = tam giác BCI)

=> tam giác AHI = tam giác BKI (cạnh huyền- góc nhọn)

=> HI = KI (2 cạnh tương ứng)