Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ ĐKXĐ: \(sinx\ne0\)
\(\Leftrightarrow a.cos2x+sinx=\frac{cos^2x}{sinx}\)
\(\Leftrightarrow a.cos2x.sinx+sin^2x-cos^2x=0\)
\(\Leftrightarrow a.cos2x.sinx-cos2x=0\)
\(\Leftrightarrow cos2x\left(a.sinx-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}cos2x=0\Rightarrow x=\frac{\pi}{4}+\frac{k\pi}{2}\\a.sinx-1=0\left(1\right)\end{matrix}\right.\)
Do \(cos2x=0\) có 4 nghiệm trên khoảng đã cho nên để pt có đúng 4 nghiệm thì (1) vô nghiệm hoặc có nghiệm \(sinx=0\)
Với \(a=0\Rightarrow-1=0\) pt vô nghiệm (thỏa mãn)
Với \(a\ne0\Rightarrow sinx=\frac{1}{a}\Rightarrow\) để pt vô nghiệm thì \(\left|\frac{1}{a}\right|>1\Rightarrow-1< a< 1\)
Vậy \(-1< a< 1\)
2/
\(\Leftrightarrow4cos^3x-3cosx-\left(2cos^2x-1\right)+m.cosx-1=0\)
\(\Leftrightarrow4cos^3x-3cosx-2cos^2x+m.cosx=0\)
\(\Leftrightarrow cosx\left(4cos^2x-2cosx+m-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\4cos^2x-2cosx+m-3=0\left(1\right)\end{matrix}\right.\)
Do \(cosx=0\) có 2 nghiệm thuộc \(\left(-\frac{\pi}{2};2\pi\right)\) , dựa vào đường tròn lượng giác ta thấy để pt có 7 nghiệm khác nhau thuộc khoảng đó thì (1) có 5 nghiệm sao cho \(-1< cosx_1< 0< cosx_2< 1\)
Đặt \(cosx=a\Rightarrow4a^2-2a+m-3=0\) (2)
Ta cần tìm m để (2) có 2 nghiệm thỏa mãn \(-1< a_1< 0< a_2< 1\)
Để (2) có 2 nghiệm trái dấu thì \(4\left(m-3\right)< 0\Rightarrow m< 3\)
Để (2) có 2 nghiệm thỏa mãn \(-1< a_1< a_2< 1\) thì:
\(\left\{{}\begin{matrix}f\left(-1\right)>0\\f\left(1\right)>0\\-1< \frac{S}{2}< 1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m>-3\\m>1\\-1< \frac{1}{4}< 1\end{matrix}\right.\) \(\Rightarrow m>1\)
Vậy \(1< m< 3\)
lim (x-->0) \(\frac{\sqrt[3]{ax+1}-\sqrt{1-bx}}{x}=2\)
<=> lim ( x-->0) \(\left(\frac{\sqrt[3]{ax+1}-1}{x}+\frac{1-\sqrt{1-bx}}{x}\right)=2\)
<=> lim (x-->0)\(\left(\frac{a}{\sqrt[3]{\left(ax+1\right)^2}+\sqrt[3]{ax+1}+1}+\frac{b}{\sqrt{1-bx}+1}\right)=2\)
<=> \(\frac{a}{3}+\frac{b}{2}=2\)
mà a + 3b = 3
=> a= 3; b = 2
=> A là đáp án sai.
Ta có: \(tan\alpha\in\left(0;1\right)\) với mọi \(\alpha \in \left( {0;\dfrac{\pi }{4}} \right) \), do đó:
\(S = \underbrace {1 - \tan \alpha + {{\tan }^2}\alpha - {{\tan }^3}\alpha + ...}_{CSN\_lvh:{u_1} = 1,q = - \tan \alpha } = \dfrac{1}{{1 + \tan \alpha }} = \dfrac{{\cos \alpha }}{{\sin \alpha + \cos \alpha }} = \dfrac{{\cos \alpha }}{{\sqrt 2 \sin \left( {\alpha + \dfrac{\pi }{4}} \right)}}\)
Ta có:
(1)\(cos\left(x\right)-sin\left(x\right)=\sqrt{2}.\dfrac{\sqrt{2}}{2}\left(cos\left(x\right)-sin\left(x\right)\right)\\ =\sqrt{2}.\left(\dfrac{\sqrt{2}}{2}.cos\left(x\right)-\dfrac{\sqrt{2}}{2}.sin\left(x\right)\right)\\ =\sqrt{2}.\left(sin\dfrac{\pi}{4}cos\left(x\right)-cos\dfrac{\pi}{4}.sin\left(x\right)\right)\\ =\sqrt{2}.sin\left(\dfrac{\pi}{4}-x\right)\)
(2) \(cos\left(x\right)+sin\left(x\right)=\sqrt{2}.\dfrac{\sqrt{2}}{2}\left(cos\left(x\right)+sin\left(x\right)\right)\\ =\sqrt{2}.\left(\dfrac{\sqrt{2}}{2}.cos\left(x\right)+\dfrac{\sqrt{2}}{2}.sin\left(x\right)\right)\\ =\sqrt{2}.\left(cos\dfrac{\pi}{4}cos\left(x\right)+sin\dfrac{\pi}{4}.sin\left(x\right)\right)\\ =\sqrt{2}.cos\left(x-\dfrac{\pi}{4}\right)\)
ADCT trên ta được:
\(sin\left(x\right)+\sqrt{2}.sin\left(\dfrac{\pi}{2}-x\right)=\sqrt{2}\\ \Leftrightarrow sin\left(x\right)+\sqrt{2}.sin\left(\dfrac{\pi}{4}-\left(x-\dfrac{\pi}{4}\right)\right)=\sqrt{2}\\ \Leftrightarrow sin\left(x\right)+cos\left(x-\dfrac{\pi}{4}\right)-sin\left(x-\dfrac{\pi}{4}\right)=\sqrt{2}\\ \sqrt{2}sin\left(x\right)+\sqrt{2}cos\left(x-\dfrac{\pi}{4}\right)+\sqrt{2}sin\left(\dfrac{\pi}{4}-x\right)=2\\ \Leftrightarrow\sqrt{2}sin\left(x\right)+cos\left(x\right)+sin\left(x\right)+cos\left(x\right)-sin\left(x\right)=2\\ \Leftrightarrow\sqrt{2}sin\left(x\right)+2cos\left(x\right)=2\)
Đến đây lại dùng cách trong sgk giải pt: a.sin(x) + b.cos(x) = c tìm ra x để thay nhá
theo giả thiết: \(\sin x=\frac{1}{3}\Rightarrow\left(1-\cos^2x\right)=\frac{1}{9}\Rightarrow cosx=\frac{\pm2\sqrt{2}}{3}\)
mà \(0< x< \frac{\pi}{2}\) nên \(cosx=\frac{2\sqrt{2}}{3}\)
ta có: \(\sin\left(a+\frac{\pi}{3}\right)=\sin a\cos\frac{\pi}{3}+\cos a\sin\frac{\pi}{3}=\frac{1}{6}+\frac{\sqrt{6}}{3}\)
Bạn @Nhók Lì Lợm giải đúng rồi nhưng bị nhầm phần biến x (lẽ ra theo đề là a)
\(tana+cota=2\Leftrightarrow\frac{sina}{cosa}+\frac{cosa}{sina}=2\)
\(\Leftrightarrow\frac{sin^2a+cos^2a}{sina.cosa}=2\)
\(\Leftrightarrow1=2sina.cosa\)
\(\Leftrightarrow sin2a=1\)
\(0< a< \dfrac{\Omega}{2}\)
=>\(sina>0\)
=>\(sina=\sqrt{1-cos^2a}=\dfrac{4}{5}\)
\(\dfrac{3}{2}\Omega< b< 2\Omega\)
=>\(sinb< 0\)
=>\(sinb=-\sqrt{1-\left(\dfrac{12}{13}\right)^2}=-\dfrac{5}{13}\)
\(tana=\dfrac{sina}{cosa}=\dfrac{4}{5}:\dfrac{3}{5}=\dfrac{4}{3}\)
\(tanb=\dfrac{sinb}{cosb}=\dfrac{-5}{13}:\dfrac{12}{13}=-\dfrac{5}{12}\)
\(tan\left(a+b\right)=\dfrac{tana+tanb}{1-tana\cdot tanb}\)
\(=\dfrac{\dfrac{4}{3}+\dfrac{-5}{12}}{1-\dfrac{4}{3}\cdot\dfrac{-5}{12}}=\dfrac{11}{12}:\left(1+\dfrac{20}{36}\right)=\dfrac{11}{12}:\dfrac{14}{9}\)
\(=\dfrac{11}{12}\cdot\dfrac{9}{14}=\dfrac{11\cdot3}{4\cdot14}=\dfrac{33}{56}\)
Giúp em vs ạ