Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B.
Đặt a = B C , b = C A , c = A B .
Quay tam giác OCA quanh trung trực của đoạn thẳng CA thì khối tròn xoay sinh ra là khối nón có chiều cao h 1 = R 2 − 1 4 b 2 và bán kính đáy r 1 = 1 2 b nên ta có V 1 = 1 3 π r 1 2 h 1 = 1 24 π b 2 4 R 2 − b 2 .
Tương tự, ta có
V 2 = 1 24 π c 2 4 R 2 − c 2 ; V 3 = 1 24 π a 2 4 R 2 − a 2 .
Bằng việc khảo sát hàm số f t = t 2 4 R 2 − t trên khoảng 0 ; 4 R 2 hoặc dựa vào bất đẳng thức Cô-si
1 2 b 2 . 1 2 b 2 . 4 R 2 − b 2 ≤ 1 2 b 2 + 1 2 b 2 + 4 R 2 − b 2 3 3 = 64 27 R 6 .
Ta được V 1 ≤ 2 π 3 9 R 3 ; V 2 ≤ 2 π 3 9 R 3 . Suy ra V 1 + V 2 ≤ 4 π 3 9 R 3 .
Dấu bằng xảy ra khi và chỉ khi b = c = 2 6 3 R .
Vậy V 1 + V 2 đạt giá trị lớn nhất bằng 4 π 3 9 R 3 khi b = c = 2 6 3 R .
Khi đó tam giác ABC cân tại A và có A B = A C = 2 6 3 R .
Gọi AH là đường cao của tam giác ABC thì 2 R . A H = A B 2 . Từ đó suy ra A H = A B 2 2 R = 4 3 R . Do đó O H = A H − R = 1 3 R và a = 2 R 2 − O H 2 = 4 2 3 R .
Suy ra V 3 = 8 π 81 R 3 .
Áp dụng BĐT tam giác ta có:
a+b>c =>c-a<b =>c2-2ac+a2<b2
a+c>b =>b-c <a =>b2-2bc+c2<a2
b+c>a =>a-b<c =>a2-2ab+b2<c2
Suy ra: c2-2ac+a2+b2-2bc+c2+a2-2ab+b2<a2+b2+c2
<=>-2.(ab+bc+ca)+2.(a2+b2+c2)<a2+b2+c2
<=>-2(ab+bc+ca)<-(a2+b2+c2)
<=>2.(ab+bc+ca)<a2+b2+c2
Đáp án B
Ta có cos A B C ⏜ = B A 2 + B C 2 - A C 2 2 B A . B C = - 1 2
⇒ A B C ⏜ = 120 ° ⇒ C B H ⏜ = 60 °
Suy ra C H = B C sin 60 ° = 5 3 2
Khi quay tam giác quay AB ta được khối có thể tích là
V = V N 1 - V N 2 = 1 3 πCH 2 . AH - 1 3 πCH 2 . BH
(Trong đó V N 1 ; V N 2 lần lượt là thể tích khối nón tạo thành khi quay các tam giác CBH và CAH quanh AB)
1 3 πCH 2 . AH - BH = 1 3 πCH 2 . AB = 75 4 π t = 2 x > 1 .
Đáp án B
Bán kính đường tròn ngoại tiếp tam giác là R = B C 2 sin A = 3 2 sin 60 = 3
Độ dài đường cao là A H = A B sin B 3 3 2
Khi quay quanh đường thẳng AD
Thể tích hình cầu tạo thành là V 1 = 4 3 π R 3 = 4 π 3
Thể tích khối nón tạo thành là V 1 = 1 3 π r 2 h = 1 3 π H B 2 . A H = 23 8 π 3
Đáp án A
Khi quay quanh AB, hình vuông ABCD sinh ra mặt trụ có thể tích V 1 = πa 3
Hình thang AMCB sinh ra hình nón cụt có thể tích
Chọn đáp án D
Phương pháp
Sử dụng công thức tính thể tích khối nón có chiều cao h và bán kính đáy r là
Cách giải
Áp dụng định lí cosin trong tam giác ABC ta có:
+) Gọi H là trung điểm của BC.
Khi quay tam giác ABC quanh cạnh BC ta được 2 hình nón có chung bán kính đáy AH, đường cao lần lượt là BH và CH với
+) Khi quay tam giác ABC quanh AB ta được khối tròn xoay như sau:
Gọi D là điểm đối xứng C qua AB, H là trung điểm của CD
+) Do điểm B và C có vai trò như nhau nên khi quay tam giác ABC quanh AC ta cũng nhận được khối tròn xoay có thể tích bằng 16.
Vậy thể tích lớn nhất có thể được khi quay tam giác ABC quanh một đường thẳng chứa cạnh của tam giác ABC là 16π
Đáp án B.