\(a^2+ab=c^2+bc\) và \(a^2...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2022

Ta có : \(a^2+ab=c^2+bc\Leftrightarrow a^2-c^2+b\left(a-c\right)=0\)

\(\Leftrightarrow\left(a-c\right)\left(a+b+c\right)=0\Leftrightarrow a-c=0\) ( do a;b;c \(\ne0\Rightarrow a+b+c\ne0\) )

\(\Leftrightarrow a=c\)

Làm tương tự ; ta có : a = b . Suy ra : a = b = c 

\(A=\left(1+\dfrac{a}{b}\right)\left(1+\dfrac{b}{c}\right)\left(1+\dfrac{c}{a}\right)=\left(1+1\right)\left(1+1\right)\left(1+1\right)=6\)

Vậy ... 

28 tháng 3 2022

Ta có : a2+ab=c2+bc⇔a2−c2+b(a−c)=0a2+ab=c2+bc⇔a2−c2+b(a−c)=0

⇔(a−c)(a+b+c)=0⇔a−c=0⇔(a−c)(a+b+c)=0⇔a−c=0 ( do a;b;c ≠0⇒a+b+c≠0≠0⇒a+b+c≠0 )

⇔a=c⇔a=c

Làm tương tự ; ta có : a = b . Suy ra : a = b = c 

A=(1+ab)(1+bc)(1+ca)=(1+1)(1+1)(1+1)=6A=(1+ab)(1+bc)(1+ca)=(1+1)(1+1)(1+1)=6

Vậy ... 

NV
29 tháng 10 2020

Bạn chỉ cần để ý điều này thôi: \(\left(x-\frac{1}{x}\right)^2=x^2-2.x.\frac{1}{x}+\frac{1}{x^2}=x^2-2+\frac{1}{x^2}\)

Do đó giả thiết viết lại thành:

\(\left(a^2-2+\frac{1}{a^2}\right)+\left(b^2-2+\frac{1}{b^2}\right)+\left(c^2-2+\frac{1}{c^2}\right)=0\)

\(\Leftrightarrow\left(a-\frac{1}{a}\right)^2+\left(b-\frac{1}{b}\right)^2+\left(c-\frac{1}{c}\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}a-\frac{1}{a}=0\\b-\frac{1}{b}=0\\c-\frac{1}{c}=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=\frac{1}{a}\\b=\frac{1}{b}\\c=\frac{1}{c}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a^2=1\\b^2=1\\c^2=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left(a^2\right)^{1010}=1^{1010}\\\left(b^2\right)^{1010}=1^{1010}\\\left(c^2\right)^{1010}=1^{1010}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a^{2020}=1\\b^{2020}=1\\c^{2010}=1\end{matrix}\right.\) \(\Leftrightarrow a^{2020}+b^{2020}+c^{2020}=3\)

26 tháng 9 2019

Sai thì bỏ qua ( bạn bè mà ) !

Nếu \(a+b+c=0\Rightarrow\hept{\begin{cases}a+b=-c\\a+c=-b\\b+c=-a\end{cases}}\)

\(\Rightarrow\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=-1-1-1=-3\)(vô lí )

\(\Rightarrow a+b+c\ne0\)

Ta có : 

\(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=1\)

\(\Rightarrow\left(a+b+c\right)\left(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\right)=a+b+c\)

Đặt a + b + c = H 

\(\Rightarrow\frac{a^2}{b+c}+\frac{ab}{a+c}+\frac{ac}{a+b}+\frac{b^2}{a+c}+\frac{ab}{b+c}+\frac{bc}{a+b}+\frac{c^2}{b+a}+\frac{ac}{c+b}+\frac{bc}{a+c}=H\) 

\(\Rightarrow\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{b+a}+\left(\frac{ab}{a+c}+\frac{bc}{a+c}\right)+\left(\frac{ac}{a+b}+\frac{bc}{a+b}\right)+\left(\frac{ab}{b+c}+\frac{ac}{c+b}\right)=H\)

\(\Rightarrow\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{b+a}+a+b+c=H\)( Chỗ này làm hơi tắt bỏ qua nha )

\(\Rightarrow\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{b+a}=H-\left(a+b+c\right)\)

\(\Rightarrow\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{b+a}=0\left(đpcm\right)\)

26 tháng 9 2019

ĐK:....

\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=1\)

\(\Rightarrow\left(a+b+c\right)\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)=a+b+c\)

\(\Leftrightarrow\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}+a+b+c=a+b+c\)(nhân vào rồi tách)

\(\Leftrightarrow\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}=0\)

 Việt Hoàng _ TTH (*Yonko Team*): Mình chưa xem kỹ nhưng có lẽ hướng làm bạn là sai òi nhé!

19 tháng 7 2017

Bài 2:
Ta có: \(f\left(a\right)=6a^5-10a^4-5a^3+23a^2-29a+2005\)

\(=\left(6a^5-10a^4-2a^3\right)-\left(3a^3-5a^2-a\right)+\left(18a^2-30a-6\right)+2011\)

\(=2a^3\left(3a^2-5a-1\right)-a\left(3a^2-5a-1\right)+6\left(3a^2-5a-1\right)+2011\)

\(=\left(2a^3-a+6\right)\left(3a^2-5a-1\right)+2011\)

\(3a^2-5a-1=0\)

\(\Rightarrow f\left(a\right)=2011\)

Vậy...

26 tháng 5 2017

Áp dụng BĐT Cauchy schwarz dạng phân thức ta có :

\(\dfrac{a^2}{1+b-a}+\dfrac{b^2}{1+c-b}+\dfrac{c^2}{1+a-c}\ge\dfrac{\left(a+b+c\right)^2}{3}\ge\dfrac{3\left(ab+bc+ca\right)}{3\left(ab+bc+ca\right)}=1\)

( vì \(a^2+b^2+c^2\ge ab+bc+ca\) )

Xảy ra đẳng thức khi và chỉ khi a=b=c= \(\sqrt{\dfrac{1}{3}}\)

6 tháng 5 2019

a) \(\frac{2x+1}{x-1}\)=\(\frac{5\left(x-1\right)}{x+1}\):dkxd x\(\ne\)\(\pm\)1

\(\Rightarrow\)(2x+1)(x+1)=5(x-1)2

\(\Leftrightarrow\)2x2+2x+x+1=5(x2-2x+1)

\(\Leftrightarrow\)2x2+2x+x+1=5x2-10x+5

\(\Leftrightarrow\)2x2+2x+x+1-5x2+10x-5=0

\(\Leftrightarrow\)-3x2+13x-4=0

\(\Leftrightarrow\)-3x2+12x+1x-4=0

\(\Leftrightarrow\)-4x(x-4)+(x-4)=0

\(\Leftrightarrow\)(x-4)(-4x+1)=0

\(\Leftrightarrow\)x-4=0 hoac -4x+1=0

\(\Leftrightarrow\)x=4(tmdkxd) \(\Leftrightarrow\)x=1/4(tmdkxd)

vay s={4;1/4}

b)\(\frac{x}{x-1}\)-\(\frac{2x}{x^{ }2^{ }-1}\)=0 dkxd x\(\ne\)\(\pm\)1

\(\Leftrightarrow\)\(\frac{x\left(X+1\right)-2x^{ }}{\left(x-1\right)\left(x+1\right)}\)=0

\(\Rightarrow\)x2+x-2x=0

\(\Leftrightarrow\)x2-x=0

\(\Leftrightarrow\)x(x-1)=0

\(\Leftrightarrow\)x=0 hoac x-1=0

\(\Leftrightarrow\)x=0(tmdkxd)\(\Leftrightarrow\)x=1(ktmdkxd)

vay s={0}

c.\(\frac{1}{x-2}\)+3=\(\frac{x-3}{2-x}\) dkxd x\(\ne\)2

\(\Leftrightarrow\)\(\frac{1}{x-2}\)+3=\(\frac{-\left(x-3\right)}{x-2}\)

\(\Leftrightarrow\)\(\frac{1+3\left(x-2\right)}{x-2}\)=\(\frac{-x+3}{x-2}\)

\(\Rightarrow\)1+3x-6=-x+3

\(\Leftrightarrow\)4x=8

\(\Leftrightarrow\)x=2(ktmdkxd)

vay s=\(\varnothing\)

chuc ban hoc totbanh

6 tháng 5 2019

a.\(\frac{2x+1}{x-1}\) = \(\frac{5\left(x-1\right)}{x+1}\)
\(\leftrightarrow\) 2x+1 = 5x - 5
\(\leftrightarrow\) 2x - 5= -1-5
\(\leftrightarrow\) -3x = -6
\(\leftrightarrow\) x =2

Vậy S=\(\left\{2\right\}\)
b.\(\frac{x}{x-1}\) - \(\frac{2x}{x^2-1}\) =0

\(\leftrightarrow\) \(\frac{x}{x-1}\) - \(\frac{2x}{\left(x-1\left(x+1\right)\right)}\)= 0 (ĐK : x\(_{\ne}\) -1 và 1)

\(\leftrightarrow\)\(\frac{x\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}\) - \(\frac{2x}{\left(x-1\left(x+1\right)\right)}\) =0

\(\leftrightarrow\) x2 + x -2x = 0

\(\leftrightarrow\)(x2 + x) -2x =0

\(\leftrightarrow\)x(x+1) -2x =0

\(\leftrightarrow\) x =0 -> x=0
x+1 =0 -> x = -1(Loại)
-2x = 0 -> x= 2(TM)
Vậy x =\(\left\{0,2\right\}\)
(BẠN NHỚ COI LẠI CÁI CÂU TRẢ LỜI Ở CUỐI MỖI BÀI NHA ,MÌNH KO CHẮC CÂU TRẢ LỜI ĐÓ )