K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2015

Bạn Sáng nói bạn ấy chỉ mới học lớp 6 mà giải được? Đồ coi theo, đồ copy...Tui xem thường..##@@

25 tháng 10 2015

bạn phân tích ra thành (a-1)a(a+1)(a^2+1)(a^4+1) ta luôn có a^2+1 và a^4+1 chia 3 dư 1. còn cái tích 3 số liên tiếp kia chia hết cho ba, nên nhân vào thì nó thành 9k+1 k chia hết cho 9

 

8 tháng 11 2021

A không chia hết B 

6 tháng 1 2016

Vì  \(a\)  không chia hết cho  \(3\) nên  \(a\) có dạng \(a=3k+1\) hoặc \(a=3k+2\)   \(\left(k\in Z\right)\)

Nếu  \(a=3k+1\)  thì  \(a^2=\left(3k+1\right)^2=9k^2+6k+1\)  chia  \(3\)  dư  \(1\)   

Nếu  \(a=3k+2\)  thì  \(a^2=\left(3k+2\right)^2=9k^2+9k+8\)  chia  \(3\)  dư  \(1\)   

Vậy,  nếu  \(a\)  không chia hết cho  \(3\)   thì  \(a^2\)  chia  \(3\)  dư  \(1\)   \(\left(1\right)\)

Tương tự,   ta cũng có nếu  \(b\) không chia hết cho  \(3\) thì  \(b^2\) chia  \(3\)  dư  \(1\)  \(\left(2\right)\)

Từ   \(\left(1\right)\) và  \(\left(2\right)\) , suy ra  \(a^2-b^2\)  chia hết cho  \(3\)   \(\left(3\right)\)

Ta có:   \(a^6-b^6=\left(a^2-b^2\right)\left[\left(a^2\right)^2+a^2b^2+\left(b^2\right)^2\right]=\left(a^2-b^2\right)\left[\left(a^2\right)^2-2a^2b^2+\left(b^2\right)^2+3a^2b^2\right]\)

\(=\left(a^2-b^2\right)\left[\left(a^2-b^2\right)+3a^2b^2\right]\)

Theo  chứng minh trên,   \(a^2-b^2\)  chia hết cho  \(3\)  nên   \(\left(a^2-b^2\right)^2\)  chia hết cho  \(3\)  

Lại có:   \(3a^2b^2\)  chia hết cho  \(3\)  với mọi  \(a;b\in Z\)

nên   \(\left(a^2-b^2\right)+3a^2b^2\)  chia hết cho  \(3\)   \(\left(4\right)\)

Từ  \(\left(3\right)\)  và  \(\left(4\right)\)  suy ra  \(\left(a^2-b^2\right)\left[\left(a^2-b^2\right)+3a^2b^2\right]\)  chia hết cho   \(3.3\)  hay  \(a^6-b^6\)  chia hết cho  \(9\)  \(\left(đpcm\right)\)

 

 

6 tháng 1 2016

a^6-b^6=(a^3-b^3)(a^3+b^3)=(a-b)(a^2+ab+b^2)(a+b)(a^2-ab+b^2)       dung hang dang thuc

Vi a,b ko chia het cho 3 (1)

suy ra TH1 a=3k+1, b=3q+2 hoacTH2 a=3k+2, b=3q+1

TH1

a+b=3k+3q+3 chia het cho 3 

a^2 va b^2 la so chinh phuong nen chia 3 du 0 hoac 1 ma a,b ko chia het cho 3

suy ra a^2, b^2 chia 3 du 1

suy ra a^2+b^2 chia 3 du 2

Lai co a=3k+1, b=3q+2 suy ra ab chia 3 du 2

Tu do suy ra a^2-ab+b^2 chia het cho 3  (2)

tu 1 va 2 so chia het cho 9

TH2 tuong tu

 

19 tháng 6 2017

Lời giải của bạn Hà sai, lời giải của bạn Quang đúng.

Vì 5x4 chia hết cho 2x2;

–4x3 chia hết cho 2x2;

6x2y chia hết cho 2x2

Do đó A = 5x4 – 4x3 + 6x2y chia hết cho 2x2 hay A chia hết cho B.

Chú ý: Đơn thức A chia hết cho đơn thức B nếu tìm được đơn thức Q sao cho A=B.Q

Ví dụ : Cho hai đơn thức A= 2x2y3; B = 7xy

Khi đó với đơn thức Giải bài tập Vật lý lớp 10 thì A=B.Q

Do đó, đơn thức A chia hết cho đơn thức B.

29 tháng 6 2015

718+18.3-1=717.7+17.3+3-1=717+17.3-1+717.6+3=(717+17.3-1)+9.717-3.717+3

                                                                       =(717+17.3-1)+9.717-3(717-1)

Ta có  717-1 chia hết cho 6 => 3(717-1) chia hết cho 18=> chia hết cho 9

Mặt khác 717+17.3-1 và 9.717 chia hết cho 9 => 718+18.3-1 chia hết cho 9

 

7 tháng 5 2016

Tại sao  717 - 1 lại chia hết cho 6 vậy Thái Hồ?