Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải phương tình: \(x+\sqrt{2x-1}=2\left(x-3\right)^2\)
Điều kiện: \(x\ge\dfrac{1}{2}\)
\(PT\Leftrightarrow\sqrt{2x-1}-3=2x^2-13x+15\\ \Leftrightarrow\dfrac{2x-10}{\sqrt{2x-1}-3}=\left(x-5\right)\left(2x-3\right)\\ \Leftrightarrow\left(x-5\right)\left(\dfrac{2}{\sqrt{2x-1}+3}-2x+3\right)=0\\ \Leftrightarrow\begin{matrix}x=5\\\dfrac{2}{\sqrt{2x-1}+3}=2x-3\left(1\right)\end{matrix}\)
\(\left(1\right)\Leftrightarrow\left(2x-3\right)\left(\sqrt{2x-1}+3\right)=2\)
Đặt \(t=\sqrt{2x-1},t>0\) phương trình trở thành \(\left(t^2-2\right)\left(t+3\right)=2\\ \)
\(\Leftrightarrow\left[{}\begin{matrix}t=-2\left(L\right)\\t=\dfrac{-1-\sqrt{17}}{2}\\t=\dfrac{-1+\sqrt{17}}{2}\end{matrix}\right.\left(L\right)\)
Với \(t=\dfrac{-1+\sqrt{17}}{2}\) ta có \(\sqrt{2x-1}=\dfrac{-1+\sqrt{17}}{2}\)
\(\Leftrightarrow2x-1=\dfrac{9-\sqrt{17}}{2}\)
\(\Leftrightarrow x=\dfrac{11-\sqrt{17}}{4}\)
Vậy \(E=\left\{5;\dfrac{11-\sqrt{17}}{4}\right\}\)
a) \(3\sqrt{x^2+3x}=\left(x+5\right)\left(2-x\right)\)
\(\Leftrightarrow3\sqrt{x^2+3x}=-x^2-3x+10\)
\(\Leftrightarrow\left(x^2+3x\right)+3\sqrt{x^2+3x}-10=0\)
Đặt \(t=\sqrt{x^2+3x}\left(t\ge0\right)\left(1\right)\)
Ta có:
\(\Rightarrow t^2+3t-10=0\)
\(\Rightarrow t_1=2\left(TM\right);t_2=-5\left(KTM\right)\)
thay \(t=2\) vào (1), ta có :
\(\sqrt{x^2+3x}=2\)
\(\Leftrightarrow x^2+3x=4\Leftrightarrow x^2+3x-4=0\)
\(\Rightarrow x_1=1;x_2=-4\)
vậy phương trình có 3 nghiệm x1 = 1, x2 = -4
b) \(\sqrt{5x^2+10x+1}=7-x^2-2x\)
\(\Leftrightarrow\sqrt{5x^2+10x+1}=\left(5x^2+10x+1\right)-6x^2+12x-6\)
\(\Leftrightarrow\sqrt{5x^2+10x+1}=\left(5x^2+10x+1\right)-6\left(x-1\right)^2\)
Đặt \(t=\sqrt{5x^2+10x+1}\) (t lớn hơn hoặc bằng 0) (1)
ta có :...............
mk chỉ bt làm đến đấy thôi, hình như đây là ôn hsg toán 10 à
\(\left(2x+1\right)\left(x^2+x-1\right)\left(2x^2-3x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=0\\x^2+x-1=0\\2x^2-3x+1=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=1\\x=\dfrac{1}{2}\end{matrix}\right.\) (pt \(x^2+x-1=0\) ko có nghiệm hữu tỉ nên ko cần quan tâm)
\(A=\left\{-\dfrac{1}{2};\dfrac{1}{2};1\right\}\)
A)
\(2x^3-5x+3=0\Leftrightarrow (2x^3-2x)-(3x-3)=0\)
\(\Leftrightarrow 2x(x^2-1)-3(x-1)=0\)
\(\Leftrightarrow 2x(x-1)(x+1)-3(x-1)=0\)
\(\Leftrightarrow (x-1)(2x^2+2x-3)=0\)
\(\Rightarrow \left[\begin{matrix} x=1\\ 2x^2+2x-3=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=1\\ x=\frac{-1\pm \sqrt{7}}{2}\end{matrix}\right.\)
Vậy \(A=\left\{1; \frac{-1+\sqrt{7}}{2}; \frac{-1-\sqrt{7}}{2}\right\}\)
B)
Ta có: \(x=\frac{1}{2^a}\geq \frac{1}{8}\)
\(\Rightarrow 2^a\leq 8\Leftrightarrow 2^a\leq 2^3\)
Mà \(a\in\mathbb{N}\Rightarrow a\in\left\{0;1;2;3\right\}\)
\(\Rightarrow x\in\left\{1; \frac{1}{2}; \frac{1}{4}: \frac{1}{8}\right\}\)
Vậy \(B=\left\{1; \frac{1}{2}; \frac{1}{4}; \frac{1}{8}\right\}\)
C) \(C=\left\{x\in\mathbb{N}|x=a^2,a\in\mathbb{N}, x\leq 400\right\}\)
Ta thấy: \(x=a^2\leq 400\)
\(\Leftrightarrow a^2-400\leq 0\Leftrightarrow (a-20)(a+20)\leq 0\)
\(\Leftrightarrow -20\leq a\leq 20\). Mà \(a\in\mathbb{N}\Rightarrow 0\leq a\leq 20\)
\(\Rightarrow a\in\left\{0;1;2;3;...;20\right\}\)
\(\Rightarrow x\in \left\{0^2;1^2;2^2;3^2;....;20^2\right\}\)
Vậy \(C=\left\{0^2;1^2;2^2;,...; 20^2\right\}\)
+)
Bài 1:
a) \(\Delta=(1-\sqrt{3})^2-4(\sqrt{3}-2)=12-6\sqrt{3}>0\) nên pt có nghiệm.
Mệnh đề A sai.
b)
\(x^2-x+\frac{1}{4}=(x-\frac{1}{2})^2\geq 0, \forall x\in\mathbb{R}\)
\(\Rightarrow x^2\geq x-\frac{1}{4} , \forall x\in\mathbb{R}\). Mệnh đề B đúng.
c) Sai, $2017$ chỉ có ước là 1 và chính nó nên là số nguyên tố.
d) \(x^2+y^2-\frac{3}{2}y+\frac{3}{4}-xy=(x^2+\frac{y^2}{4}-xy)+\frac{3}{4}y^2-\frac{3}{2}y+\frac{3}{4}\)
\(=(x-\frac{y}{2})^2+\frac{3}{4}(y^2-2y+1)=(x-\frac{y}{2})^2+\frac{3}{4}(y-1)^2\)
\(\geq 0+\frac{3}{4}.0=0\) với mọi $x,y$
\(\Rightarrow x^2+y^2-\frac{3}{2}y+\frac{3}{4}\geq xy\)
Mệnh đề đúng.
Lời giải:
Đặt $\sqrt{5x^2+10x+1}=a(a\geq 0)$ thì pt trở thành:
$a=7-(x^2+2x)=7-\frac{a^2-1}{5}$
$\Leftrightarrow a=\frac{36-a^2}{5}$
$\Leftrightarrow 5a=36-a^2$
$\Leftrightarrow a^2+5a-36=0$
$\Leftrightarrow (a-4)(a+9)=0$
$\Leftrightarrow a=4$ (do $a\geq 0$)
$\Leftrightarrow 5x^2+10x+1=16$
$\Leftrightarrow 5x^2+10x-15=0$
$\Leftrightarrow 5(x-1)(x+3)=0$
$\Leftrightarrow x=1$ hoặc $x=-3$
Vậy $A=\left\{1;-3\right\}$