Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(\left\{{}\begin{matrix}x\ge-2\\x< \frac{9}{2}\end{matrix}\right.\) \(\Rightarrow x=\left\{-2;-1;...;4\right\}\Rightarrow\sum x=7\)
a, Mệnh đề đúng
\(\Rightarrow \overline P:\)\(\sqrt{3}+\sqrt{2}\ne\frac{1}{\sqrt{3}-\sqrt{2}}\)
b, Mệnh đề sai
\(\Rightarrow \overline P:\) \(\left(\sqrt{2}-\sqrt{18}\right)^2\le8\)
c, Mệnh đề đúng
\(\Rightarrow \overline P:\) \(\left(\sqrt{3}+\sqrt{12}\right)^2\) không là một số hữu tỉ
d, Mệnh đề đúng
\(\Rightarrow \overline P:\) x = 2 không là nghiệm của PT \(\frac{x^2-4}{x-1}=0\)
b: \(\left|\overrightarrow{GB}\right|=GB=GA=\dfrac{2}{3}\cdot\dfrac{a\sqrt{3}}{2}=\dfrac{a\sqrt{3}}{3}\)
c: \(\left|\overrightarrow{GA}+\overrightarrow{GB}\right|\)
\(=\sqrt{GA^2+GB^2+2\cdot GA\cdot GB\cdot cos\left(GA,GB\right)}\)
\(=\sqrt{2\cdot\left(\dfrac{a\sqrt{3}}{3}\right)^2+2\cdot\dfrac{a\sqrt{3}}{3}\cdot\dfrac{a\sqrt{3}}{3}\cdot\dfrac{-1}{2}}\)
\(=\sqrt{2\cdot\dfrac{1}{3}\cdot a^2-\dfrac{a^2}{3}}=\sqrt{\dfrac{a^2}{3}}\)
Bài 2:
Gọi M là trung điểm của AB,N là trung điểm của CD
vecto GA+vecto GB+vecto GC+vecto GD=vecto 0
=>2 vetco GM+2 vecto GN=vecto 0
=>vecto GM+vecto GN=vecto 0
=>G là trung điểm của MN
Phương sai của mẫu số liệu là s 2 = x 1 - x 2 + x 2 - x 2 + . . . + x N - x 2 N
= 92 - 77 , 1 2 + 98 - 77 , 1 2 + 65 - 77 , 1 2 + . . . + 45 - 77 , 1 2 20 = 4249 , 8 20 = 212 , 49 .
Chọn A.