Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có x3 + ax + b \(⋮\)x2 - 2x - 3
<=> x3 + ax + b \(⋮\)(x - 3)(x + 1)
=> x = 3 và x = -1 là nghiệm của x3 + ax + b
Khi đó 33 + 3a + b = 0
<=> 3a + b = -27 (1)
Lại có -13 - a + b = 0
<=> -a + b = 1 (2)
Từ (1) và (2) => a = -7 ; b = -6
Vậy a = -7 ; b = -6 thì x3 + ax + b \(⋮\)x2 - 2x - 3
Bài 3:
\(\dfrac{f\left(x\right)}{g\left(x\right)}=\dfrac{x^4+ax^2+b}{x^2-3x+2}\)
\(=\dfrac{x^4-3x^3+2x^2+3x^3-9x^2+6x+\left(a+7\right)x^2-3x\left(a+7\right)+2\left(a+7\right)+x\left(-6+3a+7\right)+b-2a-14}{x^2-3x+2}\)
Để đây là phép chia hết thì 3a+1=0 và b-2a-14=0
=>a=-1/3; b=2a+14=-2/3+14=40/3
b: \(=\dfrac{2x^4-2x^3-2x^2-3x^3+3x^2+3x+x^2-x-1}{x^2-x-1}\)
\(=2x^2-3x+1\)
Để A(x) chia hết cho B(x) thì
[(8x2-26x+a)-(2x-3)] chia hết cho 2x-3
=> [8x2-28x+a+3]chia hết cho 2x-3
ta có :
8x2-12x-16x+a+3=4x(2x-3)-16x+a+3
Để -16x+a+3 chia hết cho 2x-3 thì a+3=24 [để xuất hiện -8(2x-3)]
do đó a=21
V....
2x^3+3x^2-x+a x^2+x-1 2x+1 2x^3+x^2 - - 2x^2-x+a 2x^2+x -2x+a -2x-1 - a+1
Để \(A\left(x\right)⋮B\left(x\right)\Leftrightarrow a+1=0\)
\(\Leftrightarrow a=-1\)
Vậy ...
Để đa thức 12x^3 - 7x^2 + a + b chia hết cho đa thức 3x^2 + 2x - 1, ta cần thực hiện phép chia đa thức.
4x - 3
_______________________
3x^2 + 2x - 1 | 12x^3 - 7x^2 + a + b
Để đa thức chia hết cho đa thức 3x^2 + 2x - 1, phần dư phải bằng 0. Vì vậy, ta có:
(12x^3 - 7x^2 + a + b) = (3x^2 + 2x - 1)(4x - 3)
Mở ngoặc, ta có:
12x^3 - 7x^2 + a + b = 12x^3 - 9x^2 + 8x^2 - 6x - 4x + 3
So sánh các hệ số tương ứng, ta có:
-7x^2 + a + b = -9x^2 + 8x^2 - 6x - 4x + 3
Từ đó, ta có hệ phương trình:
-7 = -9 + 8 => 8 = 9 - 7 => 8 = 2
a = -6
b = -4
Vậy, hệ số a = -6 và b = -4 để đa thức 12x^3 - 7x^2 + a + b chia hết cho đa thức 3x^2 + 2x - 1.