Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(\dfrac{3x-6}{x^2-6x+5}=\dfrac{3x-6}{x^2-x-5x+5}=\dfrac{3x-6}{x\left(x-1\right)-5\left(x-1\right)}=\dfrac{3x-6}{\left(x-1\right)\left(x-5\right)}\)
\(\dfrac{5x-5}{2x^2-2}=\dfrac{5x-5}{2\left(x^2-1\right)}=\dfrac{5x-5}{2\left(x-1\right)\left(x+1\right)}\)
MTC: \(2\left(x-1\right)\left(x+1\right)\left(x-5\right)\)
\(\dfrac{3x-6}{x^2-6x+5}=\dfrac{3x-6}{x^2-x-5x+5}=\dfrac{3x-6}{x\left(x-1\right)-5\left(x-1\right)}\\ =\dfrac{3x-6}{\left(x-1\right)\left(x-5\right)}=\dfrac{2\left(x+1\right)\left(3x-6\right)}{2\left(x-1\right)\left(x+1\right)\left(x-5\right)}\)
\(\dfrac{5x-5}{2x^2-2}=\dfrac{5x-5}{2\left(x^2-1\right)}=\dfrac{5x-5}{2\left(x-1\right)\left(x+1\right)}\\ =\dfrac{\left(x-5\right)\left(5x-5\right)}{2\left(x-1\right)\left(x+1\right)\left(x-5\right)}\)
Bài 2:
a: =>6x^2-4x-10=0
=>3x^2-2x-5=0
=>3x^2-5x+3x-5=0
=>(3x-5)(x+1)=0
=>x=-1 hoặc x=5/3
b: =>(x+1)(x+2)=0
=>x=-1 hoặc x=-2
Bài 3:
\(=x^2+x+\dfrac{1}{4}+\dfrac{11}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{11}{4}>=\dfrac{11}{4}\)
Dấu = xảy ra khi x=-1/2
1. Ta có:
\(\frac{1}{x}+\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+...+\frac{1}{\left(x+2013\right)\left(x+2014\right)}\)
\(=\frac{1}{x}+\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+...+\frac{1}{x+2013}-\frac{1}{x+2014}\)
\(=\frac{2}{x}-\frac{1}{x+2014}\)
\(=\frac{2\left(x+2014\right)}{x\left(x+2014\right)}-\frac{x}{x\left(x+2014\right)}\)
\(=\frac{2x+4028-x}{x\left(x+2014\right)}=\frac{x+4028}{x\left(x+2014\right)}\)
2a) ĐKXĐ: x \(\ne\)1 và x \(\ne\)-1
b) Ta có: A = \(\frac{x^2-2x+1}{x-1}+\frac{x^2+2x+1}{x+1}-3\)
A = \(\frac{\left(x-1\right)^2}{x-1}+\frac{\left(x+1\right)^2}{x+1}-3\)
A = \(x-1+x+1-3\)
A = \(2x-3\)
c) Với x = 3 => A = 2.3 - 3 = 3
c) Ta có: A = -2
=> 2x - 3 = -2
=> 2x = -2 + 3 = 1
=> x= 1/2
a/ \(\left(-4xy\right)\left(2xy^2-3x^3y\right)=-8x^2y^3+12x^4y^2\)
b/ \(\left(-5x\right)\left(3x^3+7x^2-x\right)=-15x^4-35x^3+5x^2\)
c/ \(\left(\frac{1}{2}a^3b^2-\frac{3}{4}ab^4\right)\left(\frac{4}{3}a^3b\right)=\frac{2}{3}a^6b^3-a^4b^5\)
d/ \(\left(-a^5x^5\right)\left(-a^6x+2a^3x^2-11ax^5\right)=a^{11}x^6-2a^8x^7+11a^6b^{10}\)
e) = \(\dfrac{3}{2\left(x+3\right)}\) - \(\dfrac{x-6}{2x\left(x+3\right)}\)
= \(\dfrac{3x}{2x\left(x+3\right)}\) - \(\dfrac{x-6}{2x\left(x+3\right)}\) = \(\dfrac{3x-x+6}{2x\left(x+3\right)}\)
= \(\dfrac{2x-6}{2x\left(x+3\right)}\)
= \(\dfrac{2\left(x-3\right)}{2x\left(x+3\right)}\)
c) = \(\dfrac{2\left(a^3-b^3\right)}{3\left(a+b\right)}\) . \(\dfrac{6\left(a+b\right)}{a^2-2ab+b^2}\)
= \(\dfrac{-2\left(a+b\right)\left(a^2-2ab+b^2\right)}{3\left(a+b\right)}\) . \(\dfrac{6\left(a+b\right)}{a^2-2ab+b^2}\)
= \(\dfrac{-2\left(a+b\right)}{1}\) . \(\dfrac{2}{1}\) = -4 (a+b)