\(\sqrt{3}...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 5 2020

Bài 1: diendantoanhoc.net

Đặt \(a=\frac{1}{x};b=\frac{1}{y};c=\frac{1}{z}\) BĐT cần chứng minh trở thành

\(\frac{x}{\sqrt{3zx+2yz}}+\frac{x}{\sqrt{3xy+2xz}}+\frac{x}{\sqrt{3yz+2xy}}\ge\frac{3}{\sqrt{5}}\)

\(\Leftrightarrow\frac{x}{\sqrt{5z}\cdot\sqrt{3x+2y}}+\frac{y}{\sqrt{5x}\cdot\sqrt{3y+2z}}+\frac{z}{\sqrt{5y}\cdot\sqrt{3z+2x}}\ge\frac{3}{5}\)

Theo BĐT AM-GM và Cauchy-Schwarz ta có:

\( {\displaystyle \displaystyle \sum }\)\(_{cyc}\frac{x}{\sqrt{5z}\cdot\sqrt{3x+2y}}\ge2\)\( {\displaystyle \displaystyle \sum }\)\(\frac{x}{3x+2y+5z}\ge\frac{2\left(x+y+z\right)^2}{x\left(3x+2y+5z\right)+y\left(5x+3y+2z\right)+z\left(2x+5y+3z\right)}\)

\(=\frac{2\left(x+y+z\right)^2}{3\left(x^2+y^2+z^2\right)+7\left(xy+yz+zx\right)}\)

\(=\frac{2\left(x+y+z\right)^2}{3\left(x^2+y^2+z^2\right)+\frac{1}{3}\left(xy+yz+zx\right)+\frac{20}{3}\left(xy+yz+zx\right)}\)

\(\ge\frac{2\left(x+y+z\right)^2}{3\left(x^2+y^2+z^2\right)+\frac{1}{3}\left(x^2+y^2+z^2\right)+\frac{20}{3}\left(xy+yz+zx\right)}\)

\(=\frac{2\left(x^2+y^2+z^2\right)}{5\left[x^2+y^2+z^2+2\left(xy+yz+zx\right)\right]}=\frac{3}{5}\)

16 tháng 5 2020

Bổ sung bài 1:

BĐT được chứng minh

Đẳng thức xảy ra <=> a=b=c

15 tháng 5 2020

Bài 3 thì \(\le1\)

Bài 4 thì \(\ge\frac{3}{4}\) nhé

16 tháng 12 2023

a: Gọi hàm số cần tìm có dạng là y=ax+b(a<>0)

Vì đồ thị của hàm số y=ax+b song song với đường thẳng y=5x+1 nên \(\left\{{}\begin{matrix}a=5\\b\ne1\end{matrix}\right.\)

Vậy: y=5x+b

Thay x=2 và y=-3 vào y=5x+b, ta được:

\(b+5\cdot2=-3\)

=>b+10=-3

=>b=-13

Vậy: y=5x-13

b: Thay y=5 vào y=2x-1, ta được:

2x-1=5

=>2x=6

=>x=3

Thay x=3 và y=5 vào y=ax+b, ta được:

\(a\cdot3+b=5\)

=>3a+b=5(1)

Thay x=2 và y=-3 vào y=ax+b, ta được:

2*a+b=-3

=>2a+b=-3(2)

Từ (1) và (2) ta có hệ phương trình:

\(\left\{{}\begin{matrix}3a+b=5\\2a+b=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3a+b-2a-b=5-\left(-3\right)\\2a+b=-3\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}a=8\\b=-3-2a=-3-16=-19\end{matrix}\right.\)

vậy: y=8x-19

AH
Akai Haruma
Giáo viên
11 tháng 9 2021

Lời giải:

Vì đt $y=ax+b$ song song với $y=2x+2019$ nên $a=2$

$y=ax+b$ cắt trục tung tại điểm có tung độ $2020$, nghĩa là $(0,2020)\in (y=ax+b)$

$\Leftrightarrow 2020=a.0+b$

$\Rightarrow b=2020$ 

Vậy $a=2; b=2020$

1 tháng 2 2020

Ta có: \(y=\frac{1}{3}ax^2\) đi qua \(M\left(3;-6\right)\)

\(\Rightarrow-6=\frac{1}{3}a.3^2\)

\(\Rightarrow a=-2\)

Vậy ...........

(Toán 8?)

1 tháng 2 2020

Đây là tên thật của bạn à. Phạm Thị Diệu Huyền

19 tháng 8 2016

\(\left|2m^2-7\right|-27=-2\)

\(\Leftrightarrow\left|2m^2-7\right|=25\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}2m^2-7=25\\7-2m^2=25\left(loai\right)\end{array}\right.\)

\(\Leftrightarrow m=\pm4\)

19 tháng 8 2016

ĐTHS trên đi qua M(1;-2) tức là \(-2=\left|2m^2-7\right|-27\Leftrightarrow\left|2m^2-7\right|=25\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}2m^2-7=25\\2m^2-7=-25\end{array}\right.\) \(\Leftrightarrow\left[\begin{array}{nghiempt}2m^2=32\left(\text{nhận}\right)\\2m^2=-18\left(\text{loại}\right)\end{array}\right.\)\(\Leftrightarrow m^2=16\Leftrightarrow m=\pm4\)

26 tháng 6 2016

\(\left|2m^2-7\right|-27=-2\)

\(\Rightarrow\left|2m^2-7\right|=25\)

\(\Rightarrow\left[\begin{array}{nghiempt}2m^2-7=25\\7-2m^2=25\left(loại\right)\end{array}\right.\)

\(\Rightarrow m=\pm4\)