Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
y(1) =a-4+c=\(-2\)\(\Rightarrow\) a+c=2
y(2)=4a-8+c=3 \(\Rightarrow\)4a+c=3
Trừ cho nhau\(\Rightarrow\)3a=1 \(\Rightarrow\)a=\(\dfrac{1}{3}\)\(\Rightarrow\) \(c=2-\dfrac{1}{3}=\dfrac{5}{3}\).
Vậy: \(y=\dfrac{1}{3}x^2-4x+\dfrac{5}{3}\).
b)
I(-2;1)\(\Rightarrow\dfrac{4}{2a}=-2\)\(\Leftrightarrow a=-1\).
y(-2) \(=-4+8+c=1\)\(\Rightarrow\) \(c=-3\)
Vậy: \(y=-x^2-4x-3\).
c)\(\dfrac{4}{2a}=-3\)\(\Leftrightarrow a=-\dfrac{2}{3}\)
\(y\left(-2\right)=-\dfrac{2}{3}.4+8+c=1\)\(\Leftrightarrow c=-\dfrac{13}{3}\)
Vậy: \(y=-\dfrac{2}{3}x^3-4x-\dfrac{13}{3}\).
Câu 1: (P) : \(y=ax^2+bx+c\)
Vì (P) cắt trục Ox tại hai điểm có hoành độ lần lượt là -1 và 2
nên (P) cắt hai điểm A(-1;0) và B (2;0)
A (-1;0) ∈ (P) ⇔ 0 = a - b+c (1)
B (2;0) ∈ (P) ⇔ 0 = 4a+2b+c (2)
Mà (P) cắt trục Oy tại điểm có tung độ bằng -2
nên (P) cắt C ( 0;-2)
C (0;-2) ∈ (P) ⇔ -2 = c (3)
Từ (1) ,(2) và (3) ⇔ \(\left\{{}\begin{matrix}a-b+c=0\\4a+2b+c=0\\c=-2\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}a-b=2\\4a+2b=2\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}a=1\\b=-1\end{matrix}\right.\)
Vậy (P) : \(y=x^2-x-2\)
Câu 2: (P) : \(y=ax^2+bx+c\)
Vì (P) có đỉnh I ( -2;-1)
⇔ \(\left\{{}\begin{matrix}\dfrac{-b}{2a}=-2\\-1=4a-2b+c\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}-4a+b=0\\4a-2b+c=-1\end{matrix}\right.\)(1)
Mà (P) cắt trục tung tại điểm có tung độ bằng -3
nên (P) cắt A( 0;-3)
A(0;-3) ∈ (P) ⇔ -3 = c (2)
Từ (1) và (2) ⇔ \(\left\{{}\begin{matrix}-4a+b=0\\4a-2b+c=-1\\c=-3\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}-4a+b=0\\4a-2b=2\end{matrix}\right.\)
⇔ \(\left\{{}\begin{matrix}a=\dfrac{-1}{2}\\b=-2\end{matrix}\right.\)
Vậy (P) : \(y=\dfrac{-1}{2}x^2-2x-3\)
b: Tọa độ giao điểm là:
\(\left\{{}\begin{matrix}x^2-4x+1=2x-4\\y=2x-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2-6x+5=0\\y=2x-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)\left(x-5\right)=0\\y=2x-4\end{matrix}\right.\)
\(\Leftrightarrow\left(x,y\right)\in\left\{\left(1;-2\right);\left(5;6\right)\right\}\)
c: Điểm M,N ở đâu vậy bạn?
a) Vì parabol đi qua M(1; 5) nên tọa độ của M nghiệm đúng phương trình của parabol: 5 = a.12 + b.1 + 2.
Tương tự, với N(- 2; 8) ta có: 8 = a.(- 2)2 + b.(- 2) + 2
Giải hệ phương trình: ta được a = 2, b = 1.
Parabol có phương trình là: y = 2x2 + x + 2.
b) Giải hệ phương trình:
Parabol: y = x2 - x + 2.
c) Giải hệ phương trình:
Parabol: y = x2 - 4x + 2.
d) Ta có:
Parabol: y = 16x2 + 12x + 2 hoặc y = x2 - 3x + 2.
a: Vì (d) đi qua A(3;-4) và (0;2) nên ta có hệ phương trình:
\(\left\{{}\begin{matrix}3a+b=-4\\b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-2\\b=2\end{matrix}\right.\)
b: vì (d)//y=-4x+4 nên a=-4
Vậy:(d): y=-4x+b
Thay x=-2 và y=0 vào (d), ta được:
b+8=0
hay b=-8
\(y=ax+b\left(d\right)\)
1.
\(\left(d\right)\) đi qua \(C\left(4;-3\right)\Rightarrow4a+b=-3\)
\(\left(d\right)\) song song với \(y=-\frac{2}{3}x+1\Rightarrow\left\{{}\begin{matrix}a=-\frac{2}{3}\\b\ne1\end{matrix}\right.\)
Khi đó ta có \(\left\{{}\begin{matrix}4a+b=-3\\a=-\frac{2}{3}\\b\ne1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}a=-\frac{2}{3}\\b=-\frac{1}{3}\end{matrix}\right.\Rightarrow y=-\frac{2}{3}x-\frac{1}{3}\left(d\right)\)
2.
Ta có \(\left\{{}\begin{matrix}a+b=2\\a=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=0\\a=2\end{matrix}\right.\Rightarrow y=2x\left(d\right)\)
3.
Ta có \(\left\{{}\begin{matrix}4a+b=2\\a.\left(-\frac{1}{2}\right)=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=-6\\a=2\end{matrix}\right.\Rightarrow y=2x-6\left(d\right)\)
Hàm số bậc hai có dạng : ax^2 + bx + c = 0 ( a khác 0 ) (*)
vì (*) cắt trục tung tại điểm có tung độ bằng 1 nên :
0a + 0b + c = 1 (1)
vì (*) nhận điểm I(1/4 ; 9/8) làm đỉnh nên ta có :
(.) : 1/16a + 1/4b + c = 9/8 (2)
(.) : 2a +4b = 0 (3)
Từ (1),(2),(3) ta có hệ phương trình:
0a + 0b + c = 1
1/16a + 1/4b +c = 9/8
2a +4b = 0
(=) a = -2
b = 1
c = 1
Vậy phương trình hàm số bậc hai là -2x^2 +x +1