K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 9 2019

Đáp án: B.

Với m = 0, phương trình 2 x 3  - 5 = 0 có nghiệm duy nhất.

Với m ≠ 0, đồ thị hàm số y = 2 x 3  + 3m x 2  - 5 chỉ cắt Ox tại một điểm khi y CĐ . y CT  > 0. Ta có y' = 6 x 2  + 6mx = 6x(x + m) = 0 có hai nghiệm là x = 0, x = -m; y(0) = -5, y(-m) = -2 m 3  + 3 m 3  - 5 =  m 3  - 5.

Suy ra y(0).y(-m) = -5( m 3  - 5) > 0 ⇔ m <  5 3

12 tháng 11 2018
20 tháng 4 2017

Đáp án B

3 tháng 5 2018

Đáp án: B.

Với m = 0, phương trình 2 x 3  - 5 = 0 có nghiệm duy nhất.

Với m ≠ 0, đồ thị hàm số y = 2 x 3  + 3m x 2  - 5 chỉ cắt Ox tại một điểm khi y C Đ . y C T  > 0. Ta có y' = 6 x 2  + 6mx = 6x(x + m) = 0 có hai nghiệm là x = 0, x = -m; y(0) = -5, y(-m) = -2 m 3  + 3 m 3  - 5 =  m 3  - 5.

Suy ra y(0).y(-m) = -5( m 3  - 5) > 0 ⇔ m < Giải sách bài tập Toán 12 | Giải sbt Toán 12

16 tháng 2 2017

Đáp án: D.

Xét hàm số

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Ta có: y' = x 2  - mx = 0 ⇔ x = 0 hoặc x = 3

Nếu m = 0: Phương trình thành  x 3 /3 - 5 = 0, có nghiệm duy nhất.

Nếu m ≠ 0: Phương trình đã cho có nghiệm duy nhất khi và chỉ khi cực đại và cực tiểu của hàm số

Giải sách bài tập Toán 12 | Giải sbt Toán 12

cùng dấu.

Giải sách bài tập Toán 12 | Giải sbt Toán 12

23 tháng 5 2017

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

AH
Akai Haruma
Giáo viên
19 tháng 12 2017

Lời giải:

Để hàm số đồng biến trên R thì:

\(y'=(m+2)x^2+2mx+1\geq 0\forall x\in\mathbb{R}\)

Theo định lý về dấu của tam thức bậc 2 thì điều này xảy ra khi :

\(\left\{\begin{matrix} m+2> 0\\ \Delta'=m^2-m-2\leq 0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} m> -2\\ (m+1)(m-2)\leq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m> -2\\ -1\leq m\leq 2\end{matrix}\right.\)

\(\Leftrightarrow -1\leq m\leq 2\)

Đáp án B

23 tháng 5 2017

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

2 tháng 9 2018

Đáp án: B.

Hàm số đã cho có cực trị khi và chỉ khi

y' = 3 x 2  - 6(m - 1)x - 3(m + 3) = 0 có 2 nghiệm phân biệt

⇔ ∆ ' = m - 1 2  + (m + 3) =  m 2  - m + 4 > 0

Ta thấy tam thức  ∆ ' =  m 2  - m + 4 luôn dương với mọi m vì

δ = 1 - 16 = -15 < 0, a = 1 > 0

Vậy hàm số đã cho luôn có cực trị mới mọi m  ∈  R

6 tháng 8 2019

Đáp án: B.

Hàm số đã cho có cực trị khi và chỉ khi

y' = 3 x 2  - 6(m - 1)x - 3(m + 3) = 0 có 2 nghiệm phân biệt

⇔ Δ' = ( m - 1 ) 2  + (m + 3) = m 2  - m + 4 > 0

Ta thấy tam thức Δ' =  m 2  - m + 4 luôn dương với mọi m vì

δ = 1 - 16 = -15 < 0, a = 1 > 0

Vậy hàm số đã cho luôn có cực trị mới mọi m ∈ R