K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 9 2018

Hàm số không có cực trị khi đạo hàm của nó không đổi dấu trên tập xác định R\{m}.

Ta có:

Giải sách bài tập Toán 12 | Giải sbt Toán 12 Giải sách bài tập Toán 12 | Giải sbt Toán 12 Giải sách bài tập Toán 12 | Giải sbt Toán 12

Xét g(x) = x 2  – 2mx – 2 m 2  + 3

∆ ’g =  m 2  + 2 m 2  – 3 = 3( m 2  – 1) ;

∆ ’g  ≤ 0 khi – 1  ≤  m  ≤  1.

Khi – 1  ≤  m  ≤  1 thì phương trình g(x) = 0 vô nghiệm hay y’ = 0 vô nghiệm và y’ > 0 trên

tập xác định. Khi đó, hàm số không có cực trị.

Khi m = 1 hoặc m = -1, hàm số đã cho trở thành y = x + 3 (với x  ≠  1) hoặc y = x – 3 (với x  ≠  - 1) Các hàm số này không có cực trị.

Vậy hàm số đã cho không có cực trị khi – 1  ≤  m  ≤  1.

24 tháng 3 2016

- Khi \(m=0\Rightarrow y=x-1\) nên hàm số không có cực trị

- Khi \(m\ne0\Rightarrow y'=3mx^2+6mx-\left(m-1\right)\) 

hàm số không có cực trị khi và chỉ chỉ y' = 0 không có nghiệm hoặc có nghiệm kép

\(\Leftrightarrow\Delta'=9m^2+3m\left(m-1\right)=12m^2-3m\le0\) \(\Leftrightarrow0\le m\)\(\le\frac{1}{4}\)

28 tháng 11 2017

Giải bài 6 trang 18 sgk Giải tích 12 | Để học tốt Toán 12

Ta có bảng biến thiên:

Giải bài 6 trang 18 sgk Giải tích 12 | Để học tốt Toán 12

Dựa vào BBT thấy hàm số đạt cực đại tại x = -m – 1.

Hàm số đạt cực đại tại x = 2 ⇔ -m – 1 = 2 ⇔ m = -3.

Vậy m = -3.

 

31 tháng 3 2017

Tập xác định :

Nếu hàm số đạt cực đại tại x = 2 thì y'(2) = 0 ⇔ m2 + 4m + 3 = 0 ⇔ m=-1 hoặc m=-3

- Với m = -1, ta có :

x=0 hoặc x=2.

Ta có bảng biến thiên :

Trường hợp này ta thấy hàm số không đạt cực đại tại x = 2.

- Với m = -3, ta có:

x=2 hoặc x=4

Ta có bản biến thiên :

Trường hợp này ta thấy hàm số đạt cực đại tại x = 2.

Vậy m = -3 là giá trị cần tìm.

21 tháng 4 2017

Lời giải + diễn giải

để hàm có cực trị f'(x) phải có nghiệm và đổi dấu qua nghiệm

a) \(y'=3x^2-6x+m\)

xét f(x)= 3x^2 -6x+m

để f(x) là hàm bậc 2 => có nghiệm và đổi dấu qua nghiệm đk cần và đủ \(\Delta>0\)

\(\Leftrightarrow\Delta'=9-3m>0\Rightarrow m< 3\)

Kết luận với m< 3 hàm A(x) luôn có cực trị

b)

\(y'=3x^2+4mx+m\)

\(\Delta'=4m^2-3m>0\Leftrightarrow\left[{}\begin{matrix}m< 0\\m>\dfrac{3}{4}\end{matrix}\right.\)

c)

\(y=\dfrac{x^2-2mx+5}{x-m}\Rightarrow\left\{{}\begin{matrix}x\ne m\\y=\left(x-m\right)+\dfrac{5-m^2}{x-m}\end{matrix}\right.\)

\(y'=1+\dfrac{m^2-5}{\left(x-m\right)^2}\)

\(y'=0\Leftrightarrow\left(x-m\right)^2+m^2-5=0\Rightarrow5-m^2>0\Rightarrow-\sqrt{5}< m< \sqrt{5}\)

GV
21 tháng 4 2017

\(y'=3x^2-4x+m\)

Để hàm số đạt cực tiểu tai x = 1 thì x = 1 là nghiệm của y' và y' đổi dấu khi đi qua x = 1.

Để x = 1 là nghiệm của y' thì:

\(3.1^2-4.1+m=0\) \(\Rightarrow m=1\)

Với m = 1. khi đó: \(y'=3x^2-4x+1\) có 2 nghiệm là \(1\)\(\dfrac{1}{3}\); \(y'\) đổi dấu từ âm sang dương khi đi qua x = 1. Vậy hàm số có cực tiểu tại x = 1.

8 tháng 2 2019

Đáp án: A.

- Nếu m = 0 thì y = -2x - 2, hàm số không có cực trị.

- Nếu m ≠ 0: Hàm số không có cực trị khi và chỉ khi phương trình y' = m x 2  + 2mx + 2(m - 1) = 0 không có hai nghiệm phân biệt. Muốn vậy, phải có

Δ' = m 2  - 2m(m - 1) = - m 2  + 2m ≤ 0

⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

13 tháng 7 2019

Đáp án: A.

- Nếu m = 0 thì y = -2x - 2, hàm số không có cực trị.

- Nếu m ≠ 0: Hàm số không có cực trị khi và chỉ khi phương trình y' = m x 2  + 2mx + 2(m - 1) = 0 không có hai nghiệm phân biệt. Muốn vậy, phải có

∆ ' =  m 2  - 2m(m - 1) = - m 2  + 2m ≤ 0

⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

8 tháng 10 2019

TXĐ: D = R

y’ = 3 x 2  + 4mx + m

Hàm số có cực trị khi và chỉ khi y’ đổi dấu trên R.

⇔ 3 x 2  + 4mx + m có hai nghiệm phân biệt.

⇔ Δ’ = 4 m 2  -3m > 0 ⇔ m(4m – 3) > 0

⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vậy hàm số đã cho có cực đại, cực tiểu khi m < 0 hoặc m > 3/4.

29 tháng 8 2019

TXĐ: D = R

y’ = 3 x 2  + 4mx + m

Hàm số có cực trị khi và chỉ khi y’ đổi dấu trên R.

⇔ 3 x 2  + 4mx + m có hai nghiệm phân biệt.

⇔ ∆ ’ = 4 m 2  -3m > 0 ⇔ m(4m – 3) > 0

⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vậy hàm số đã cho có cực đại, cực tiểu khi m < 0 hoặc m > 3/4.