\(x^2-x+1-m=0\) có 2 nghiệm thực 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2023

\(x^2-x+1-m=0\)

Theo Vi - ét, ta có :

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=1\\x_1x_2=\dfrac{c}{a}=1-m\end{matrix}\right.\)

Ta có :

\(5\left(\dfrac{1}{x_1}+\dfrac{1}{x_2}\right)-x_1x_2+4=0\)

\(\Leftrightarrow5\left(\dfrac{x_2+x_1}{x_1x_2}\right)-x_1x_2+4=0\)

\(\Leftrightarrow5\left(\dfrac{1}{1-m}\right)-\left(1-m\right)+4=0\)

\(\Leftrightarrow\dfrac{5}{1-m}-1+m+4=0\)

\(\Leftrightarrow\dfrac{5}{1-m}+m+3=0\)

\(\Leftrightarrow\dfrac{5+m\left(1-m\right)+3\left(1-m\right)}{1-m}=0\)

\(\Leftrightarrow5+m-m^2+3-3m=0\)

\(\Leftrightarrow-m^2-2m+8=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}m=2\\m=-4\end{matrix}\right.\)

2 tháng 4 2023

loading...

10 tháng 4 2020

Ta có: \(\Delta=b^2-4ac=1-4\left(1-m\right)=4m-3\)

Để pt có nghiệm x1;x2 thì \(\Delta\ge0\)

<=> 4m-3 >

<=> \(m\ge\frac{3}{4}\)(*)

Theo định lý Vi-et ta có: \(x_1+x_2=-\frac{b}{a}=1\) và \(x_1x_2=\frac{c}{a}=1-m\)

Ta có: \(5\left(\frac{1}{x_1}+\frac{1}{x_2}\right)-x_1x_2+4=5\left(\frac{x_1+x_2}{x_1x_2}\right)-x_1x_2+4=\frac{5}{1-m}-\left(1-m\right)+4=0\)

\(\Leftrightarrow\hept{\begin{cases}5-\left(1-m\right)^2+4\left(1-m\right)=0\\m\ne1\end{cases}\Leftrightarrow\hept{\begin{cases}m^2+2m-8=0\\m\ne1\end{cases}}\Leftrightarrow\orbr{\begin{cases}m=2\\m=-4\end{cases}}}\)

Kết hợp với điều kiện (*) ta có m=2 là giá trị cần tìm

DD
14 tháng 5 2021

\(\Delta'=\left(m+1\right)^2-\left(2m-3\right)=m^2+4>0,\forall m\inℝ\)

nên phương trình luôn có hai nghiệm phân biệt \(x_1+x_2\)

Theo định lí Viete: 

\(\hept{\begin{cases}x_1+x_2=2m+2\\x_1x_2=2m-3\end{cases}}\)

\(P=\left|\frac{x_1+x_2}{x_1-x_2}\right|=\frac{\left|x_1+x_2\right|}{\left|x_1-x_2\right|}=\frac{\left|x_1+x_2\right|}{\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}}\)

\(=\frac{\left|2m+2\right|}{\sqrt{\left(2m+2\right)^2-4\left(2m-3\right)}}=\frac{\left|2m+2\right|}{\sqrt{4m^2+16}}=\frac{\left|m+1\right|}{\sqrt{m^2+4}}\ge0\)

Dấu \(=\)xảy ra khi \(m=-1\)

17 tháng 8 2016

a) Nếu m = -1 thì : \(4x-3=0\Leftrightarrow x=\frac{3}{4}\) => pt có một nghiệm

Nếu \(m\ne-1\) , xét \(\Delta'=\left(m-1\right)^2-\left(m+1\right)\left(m-2\right)=m^2-2m+1-\left(m^2-m-2\right)=-m+3\)

Để pt có hai nghiệm phân biệt thì \(\Delta>0\) , tức là \(3-m>0\Leftrightarrow m< 3\)

Vậy để pt có hai nghiệm phân biệt thì \(\begin{cases}m< 3\\m\ne-1\end{cases}\)

b) Thay x = 2 vào pt đã cho  , tìm được m = -6

Suy ra pt : \(-5x^2+14x-8=0\Leftrightarrow\left(5x-4\right)\left(x-2\right)=0\) \(\Leftrightarrow\left[\begin{array}{nghiempt}x=2\\x=\frac{4}{5}\end{array}\right.\)

Vậy nghiệm còn lại là x = 4/5

17 tháng 8 2016

c) Áp dụng hệ thức Vi-et , ta có : \(\begin{cases}x_1+x_2=2\left(m-1\right)\\x_1.x_2=m-2\end{cases}\)

\(\frac{1}{x_1}+\frac{1}{x_2}=\frac{7}{4}\Leftrightarrow4\left(x_1+x_2\right)=7x_1.x_2\)

\(\Rightarrow4.\left(2m-2\right)=7.\left(m-2\right)\Leftrightarrow8m-8=7m-14\Leftrightarrow m=-6\)

d) Ta có : \(A=2\left(x_1^2+x_2^2\right)+x_1.x_2=2\left(x_1+x_2\right)^2-3x_1.x_2=8\left(m-1\right)^2-3\left(m-2\right)\)

\(=8m^2-19m+14=8\left(m-\frac{19}{16}\right)^2+\frac{87}{32}\ge\frac{87}{32}\)

=> Min A = 87/32 <=> m = 19/16

 

31 tháng 5 2021

Theo Vi et : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=2m+2\\x_1x_2=\frac{c}{a}=m^2+3\end{cases}}\)

\(A=m^2+3+2m+2=m^2+2m+5=\left(m+1\right)^2+4\ge4\)

Dấu ''='' xảy ra khi m = -1 

Vậy GTNN A là 4 khi m =-1 

27 tháng 3 2020

Xét \(\Delta'=m^2-4=\left(m-2\right)\left(m+2\right)\)

Để phương trình có 2 nghiệm x1; x2 điều kiện là: 

\(\Delta'=m^2-4=\left(m-2\right)\left(m+2\right)\ge0\Leftrightarrow\orbr{\begin{cases}m\ge2\\m\le-2\end{cases}}\)( ***)

Áp dụng định lí viet ta có: \(\hept{\begin{cases}x_1.x_2=4\\x_1+x_2=2m\end{cases}}\)

Theo bài ra ta có: \(\left(x_1+1\right)^2+\left(x_2+1\right)^2=2\)

<=> \(x_1^2+2x_1+1+x_2^2+2x_2+1=2\)

<=> \(\left(x_1+x_2\right)^2-2x_1x_2+2\left(x_1+x_2\right)=0\)

<=> \(\left(2m\right)^2-2.4+2.\left(2m\right)=0\)

<=> \(m^2+m-2=0\)

<=> m = - 2 ( thỏa mãn (***) ) hoặc m = 1 ( không thỏa mãn ***)
Vậy m = - 2.

10 tháng 8 2018

dùng phương pháp Vi-ét ko hoàn toàn

(mình đăng lên youtube rồi đấy)

10 tháng 8 2018

xem rồi giùm mk nha

8 tháng 5 2017

* pt có 2 ngiệm pb \(\Leftrightarrow\Delta>0\Rightarrow\Delta=\left(2m+1\right)^2-4\left(m^2+m-6\right)>0\)

\(\Rightarrow\Delta=4m^2+4m+1-4m^2-4m+24=25>0\)

\(\Rightarrow\)pt luôn có 2 nghiệm pb \(\forall\)m.

* Theo hệ thức vi-ét :\(\left\{{}\begin{matrix}x_1+x_2=2m+1\\x_1x_2=m^2+m-6\end{matrix}\right.\)

\(\Rightarrow x_1^2+x^2_2+x_1x_2=\left(x_1+x_2\right)^2-2x_1x_2+x_1x_2\)

\(\Rightarrow\left(x_1+x_2\right)^2-x_1x_2=10\)

\(\Rightarrow\left(2m+1\right)^2-\left(m^2+m-6\right)=10\)

\(\Rightarrow4m^2+4m+1-m^2-m+6-10=0\)

\(\Rightarrow3m^2+3m-3=0\Rightarrow m^2+m-1=0\)

\(\Rightarrow m=\dfrac{-1\pm\sqrt{5}}{2}\)( thỏa mãn).

Vậy....

Đây là ý kiến của mk.Nếu đúng thì bn cho 1 tick, còn nếu sai thì mong bn góp ý.

8 tháng 5 2017

Phương trình: \(x^2-\left(2m+1\right)x+m^2+m-6=0\left(1\right)\)

Xét phương trình (1) có:

\(\Delta=\left(2m+1\right)^2-4\left(m^2+m-6\right)\)

= \(4m^2+4m+1-4m^2-4m+24=25>0\)

\(\Rightarrow\Delta>0\)

\(\Rightarrow\) Phương trình (1) có 2 nghiệm phân biệt với mọi giá trị của m

Áp dụng hệ thức Vi-ét ta có:

\(\left\{{}\begin{matrix}x_1+x_2=2m+1\\x_1.x_2=m^2+m-6\end{matrix}\right.\)

Theo đề bài ta có:

\(x_1^2+x_2^2+x_1x_2=10\)

\(\Rightarrow\left(x_1+x_2\right)^2-2x_1x_2+x_1x_2=10\)

\(\Rightarrow\left(x_1+x_2\right)^2-x_1x_2-10=0\)

\(\Leftrightarrow\left(2m+1\right)^2-\left(m^2+m-6\right)-10=0\)

\(\Leftrightarrow4m^2+4m+1-m^2-m+6-10=0\)

\(\Leftrightarrow3m^2+3m-3=0\)

\(\Leftrightarrow m^2+m-1=0\)

\(\Leftrightarrow\left(2m+1-\sqrt{5}\right)\left(2m+1+\sqrt{5}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2m+1-\sqrt{5}=0\\2m+1+\sqrt{5}=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}m=\dfrac{-1+\sqrt{5}}{2}\\m=\dfrac{-1-\sqrt{5}}{2}\end{matrix}\right.\)

Vậy để phương trình (1) có 2 nghiệm phân biệt \(x_1,x_2\) thỏa mãn \(x_1^2+x_2^2+x_1x_2=10\) thì \(m=\dfrac{-1+\sqrt{5}}{2}\) hoặc \(m=\dfrac{-1-\sqrt{5}}{2}\)