Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x-a\right)\left(x-b\right)\left(x-c\right)=\left(x^2-ax-bx+ab\right)\left(x-c\right)\)
\(=x^3-ax^2-bx^2+abx-cx^2+acx+bcx-abc\)
\(=x^3-x^2\left(a+b+c\right)+x\left(ab+ac+bc\right)-abc\)
Nhưn vậy: \(x^3-ax^2+bx-c=x^3-x^2\left(a+b+c\right)+x\left(ab+bc+ac\right)-abc\)
Cân bằng hệ số hai vế ta có:
\(\hept{\begin{cases}a=a+b+c\left(1\right)\\b=ab+bc+ac\left(2\right)\\c=abc\left(3\right)\end{cases}}\)
(3) <=> abc-c=0 <=> c(ab-1)=0
+) TH1 c=0
\(\hept{\begin{cases}b=0\\b=ab\end{cases}}\)
Như vậy với trường hợp này: b=c=0 , với mọi a
TH2: ab-1 =0 <=> ab=1 => a, b khác 0 => c khác 0
\(\hept{\begin{cases}b+c=0\\b=1+bc+ac\end{cases}}\Leftrightarrow\hept{\begin{cases}b=-c\\-c=1-c^2-ab\end{cases}\Leftrightarrow}\hept{\begin{cases}b=-c\\c^2-c=0\end{cases}}\Leftrightarrow c=1,b=-1,a=-1\)
Do đó trường hợp này a=-1, b=-1, c=1
Kết luận;...
Tiểu biểu một câu thôi, mấy câu còn lại tương tự.
Tư tưởng là phân tích vế trái để sử dụng đồng nhất hệ số.
b) \(\left(ax+b\right)\left(x^2-x-1\right)=ax^3+cx^2-1\)
\(\Leftrightarrow ax^3-ax^2+bx^2-ax-bx-b=ax^3+cx^2-1\)
\(\Leftrightarrow ax^3+x^2\left(-a+b\right)-x\left(a+b\right)-b=ax^3+c\cdot x^2-0\cdot x-1\)
Đồng nhất hệ số:
\(\hept{\begin{cases}-a+b=c\\a+b=0\\b=1\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a=-1\\b=1\\c=2\end{cases}}\)
Các câu còn lại tương tự.
a) (2x - 5)(3x + b) = ax^2 + x + c
<=> 6x^2 + 2bx -15x -5b = ax^2 + x + c
<=> -ax^2 + 2bx -5b -c = -6x^2 +16x
Đồng nhất hệ số ta có :
+) -a = -6 => a= 6
+) 2b = 16 => b= 8
+) -5b -c= 0 => c= -40
c ) (ax+b)( x^2 -x-1)= ax^3 - cx^2 - 1
<=> ax^3 -ax^2-ax +bx^2-bx-b= ax^3 - cx^2 - 1
<=> (c+b-a)x^2 -(a+b)x -b = -1
Đồng nhất hệ số ta được:
+) c+b-a =0
+) -a-b = 0
+) -b = -1 => b= 1
Thay b=1 ta được a = -1 và c= -2
<p>a) (2x - 5)(3x + b) = ax^2 + x + c<br><=> 6x^2 + 2bx -15x -5b = ax^2 + x + c<br><=> -ax^2 + 2bx -5b -c = -6x^2 +16x<br>Đồng nhất hệ số ta có :<br>+) -a = -6 => a= 6<br>+) 2b = 16 => b= 8<br>+) -5b -c= 0 => c= -40</p>
Trả lời nhanh giúp mình với, các bạn ơi! Mình rất cần đấy!
Phá tung cái ngoặc ra thôi mà nhỉ?
a) \(\left(3x-5\right)\left(3x+b\right)=9x^2+\left(3b-15\right)x-5b\)
Đồng nhất hệ số ta có: \(\left\{{}\begin{matrix}9=a\\3b-15=1\\-5b=c\end{matrix}\right.\) giải cái hệ 3 pt này là thu được a, b, c
a) ( 2x + 3 )( 3x + a ) = bx2 + cx - 3
<=> 2x( 3x + a ) + 3( 3x + a ) = bx2 + cx - 3
<=> 6x2 + 2ax + 9x + 3a = bx2 + cx - 3
<=> 6x2 + ( 2a + 9 )x + 3a = bx2 + cx - 3
Đồng nhất hệ số
=> \(\hept{\begin{cases}b=6\\2a+9=c\\3a=-3\end{cases}}\Rightarrow\hept{\begin{cases}b=6\\c=7\\a=-1\end{cases}}\)
b) ( ax + 1 )( x2 - bx + 3 ) = 2x3 - x2 + 5x + c
<=> ax( x2 - bx + 3 ) + x2 - bx + 3 = 2x3 - x2 + 5x + c
<=> ax3 - abx2 + 3ax + x2 - bx + 3 = 2x3 - x2 + 5x + c
<=> ax3 + ( 1 - ab )x2 + ( 3a - b )x + 3 = 2x3 - x2 + 5x + c
Đồng nhất hệ số
=> \(\hept{\begin{cases}a=2\\1-ab=-1\\3a-b=5\end{cases}}\)và c = 3 => \(\hept{\begin{cases}a=2\\b=1\\c=3\end{cases}}\)
a) Ta có:
\(\left(2x+3\right)\left(3x+a\right)=bx^2+cx-3\)
\(\Leftrightarrow6x^2+\left(2a+9\right)x+3a=bx^2+cx-3\)
Đồng nhất hệ số ta được:
\(\hept{\begin{cases}6=b\\2a+9=c\\a=-1\end{cases}}\Rightarrow\hept{\begin{cases}a=-1\\b=6\\c=7\end{cases}}\)
b) \(\left(ax+1\right)\left(x^2-bx+3\right)=2x^3-x^2+5x+c\)
\(\Leftrightarrow ax^3+\left(1-ab\right)x^2+\left(3a-b\right)x+3=2x^3-x^2+5x+c\)
\(\Rightarrow\hept{\begin{cases}a=2\\1-ab=-1\\3a-b=5\end{cases}}\&c=3\)
\(\Rightarrow\hept{\begin{cases}a=2\\b=1\\c=3\end{cases}}\)
Lời giải :
\(x^3-ax^2+bx-c=\left(x-a\right)\left(x-b\right)\left(x-c\right)\)
\(\Leftrightarrow x^3-ax^2+bx-c=x^3-x^2c-x^2b-x^2a+xbc+xac+xab-abc\)
\(\Leftrightarrow x^3-ax^2+bx-c=x^3-x^2\left(a+b+c\right)+x\left(ab+bc+ac\right)-abc\)
Đồng nhất hệ số ta được :
\(\hept{\begin{cases}a+b+c=a\\ab+bc+ac=b\\ab=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}b+c=0\left(1\right)\\bc+ac+1=b\left(2\right)\\ab=1\left(3\right)\end{cases}}\)
Theo \(\left(1\right)\Leftrightarrow b=-c\)
Khi đó : \(\left(3\right)\Leftrightarrow-ac=1\Leftrightarrow ac=-1\)
Khi đó : \(\left(2\right)\Leftrightarrow bc-1+1=b\)
\(\Leftrightarrow bc=b\)
\(\Leftrightarrow c=1\)
\(\Rightarrow\hept{\begin{cases}a=\frac{1}{-1}=-1\\b=0-1=-1\end{cases}}\)
Vậy \(a=b=-1;c=1\)