Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tiểu biểu một câu thôi, mấy câu còn lại tương tự.
Tư tưởng là phân tích vế trái để sử dụng đồng nhất hệ số.
b) \(\left(ax+b\right)\left(x^2-x-1\right)=ax^3+cx^2-1\)
\(\Leftrightarrow ax^3-ax^2+bx^2-ax-bx-b=ax^3+cx^2-1\)
\(\Leftrightarrow ax^3+x^2\left(-a+b\right)-x\left(a+b\right)-b=ax^3+c\cdot x^2-0\cdot x-1\)
Đồng nhất hệ số:
\(\hept{\begin{cases}-a+b=c\\a+b=0\\b=1\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a=-1\\b=1\\c=2\end{cases}}\)
Các câu còn lại tương tự.
Lời giải :
\(x^3-ax^2+bx-c=\left(x-a\right)\left(x-b\right)\left(x-c\right)\)
\(\Leftrightarrow x^3-ax^2+bx-c=x^3-x^2c-x^2b-x^2a+xbc+xac+xab-abc\)
\(\Leftrightarrow x^3-ax^2+bx-c=x^3-x^2\left(a+b+c\right)+x\left(ab+bc+ac\right)-abc\)
Đồng nhất hệ số ta được :
\(\hept{\begin{cases}a+b+c=a\\ab+bc+ac=b\\ab=1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}b+c=0\left(1\right)\\bc+ac+1=b\left(2\right)\\ab=1\left(3\right)\end{cases}}\)
Theo \(\left(1\right)\Leftrightarrow b=-c\)
Khi đó : \(\left(3\right)\Leftrightarrow-ac=1\Leftrightarrow ac=-1\)
Khi đó : \(\left(2\right)\Leftrightarrow bc-1+1=b\)
\(\Leftrightarrow bc=b\)
\(\Leftrightarrow c=1\)
\(\Rightarrow\hept{\begin{cases}a=\frac{1}{-1}=-1\\b=0-1=-1\end{cases}}\)
Vậy \(a=b=-1;c=1\)
a) (2x - 5)(3x + b) = ax^2 + x + c
<=> 6x^2 + 2bx -15x -5b = ax^2 + x + c
<=> -ax^2 + 2bx -5b -c = -6x^2 +16x
Đồng nhất hệ số ta có :
+) -a = -6 => a= 6
+) 2b = 16 => b= 8
+) -5b -c= 0 => c= -40
c ) (ax+b)( x^2 -x-1)= ax^3 - cx^2 - 1
<=> ax^3 -ax^2-ax +bx^2-bx-b= ax^3 - cx^2 - 1
<=> (c+b-a)x^2 -(a+b)x -b = -1
Đồng nhất hệ số ta được:
+) c+b-a =0
+) -a-b = 0
+) -b = -1 => b= 1
Thay b=1 ta được a = -1 và c= -2
<p>a) (2x - 5)(3x + b) = ax^2 + x + c<br><=> 6x^2 + 2bx -15x -5b = ax^2 + x + c<br><=> -ax^2 + 2bx -5b -c = -6x^2 +16x<br>Đồng nhất hệ số ta có :<br>+) -a = -6 => a= 6<br>+) 2b = 16 => b= 8<br>+) -5b -c= 0 => c= -40</p>
Trả lời nhanh giúp mình với, các bạn ơi! Mình rất cần đấy!
a) ( 2x + 3 )( 3x + a ) = bx2 + cx - 3
<=> 2x( 3x + a ) + 3( 3x + a ) = bx2 + cx - 3
<=> 6x2 + 2ax + 9x + 3a = bx2 + cx - 3
<=> 6x2 + ( 2a + 9 )x + 3a = bx2 + cx - 3
Đồng nhất hệ số
=> \(\hept{\begin{cases}b=6\\2a+9=c\\3a=-3\end{cases}}\Rightarrow\hept{\begin{cases}b=6\\c=7\\a=-1\end{cases}}\)
b) ( ax + 1 )( x2 - bx + 3 ) = 2x3 - x2 + 5x + c
<=> ax( x2 - bx + 3 ) + x2 - bx + 3 = 2x3 - x2 + 5x + c
<=> ax3 - abx2 + 3ax + x2 - bx + 3 = 2x3 - x2 + 5x + c
<=> ax3 + ( 1 - ab )x2 + ( 3a - b )x + 3 = 2x3 - x2 + 5x + c
Đồng nhất hệ số
=> \(\hept{\begin{cases}a=2\\1-ab=-1\\3a-b=5\end{cases}}\)và c = 3 => \(\hept{\begin{cases}a=2\\b=1\\c=3\end{cases}}\)
a) Ta có:
\(\left(2x+3\right)\left(3x+a\right)=bx^2+cx-3\)
\(\Leftrightarrow6x^2+\left(2a+9\right)x+3a=bx^2+cx-3\)
Đồng nhất hệ số ta được:
\(\hept{\begin{cases}6=b\\2a+9=c\\a=-1\end{cases}}\Rightarrow\hept{\begin{cases}a=-1\\b=6\\c=7\end{cases}}\)
b) \(\left(ax+1\right)\left(x^2-bx+3\right)=2x^3-x^2+5x+c\)
\(\Leftrightarrow ax^3+\left(1-ab\right)x^2+\left(3a-b\right)x+3=2x^3-x^2+5x+c\)
\(\Rightarrow\hept{\begin{cases}a=2\\1-ab=-1\\3a-b=5\end{cases}}\&c=3\)
\(\Rightarrow\hept{\begin{cases}a=2\\b=1\\c=3\end{cases}}\)
Phá tung cái ngoặc ra thôi mà nhỉ?
a) \(\left(3x-5\right)\left(3x+b\right)=9x^2+\left(3b-15\right)x-5b\)
Đồng nhất hệ số ta có: \(\left\{{}\begin{matrix}9=a\\3b-15=1\\-5b=c\end{matrix}\right.\) giải cái hệ 3 pt này là thu được a, b, c
\(\left(x-a\right)\left(x-b\right)\left(x-c\right)=\left(x^2-ax-bx+ab\right)\left(x-c\right)\)
\(=x^3-ax^2-bx^2+abx-cx^2+acx+bcx-abc\)
\(=x^3-x^2\left(a+b+c\right)+x\left(ab+ac+bc\right)-abc\)
Nhưn vậy: \(x^3-ax^2+bx-c=x^3-x^2\left(a+b+c\right)+x\left(ab+bc+ac\right)-abc\)
Cân bằng hệ số hai vế ta có:
\(\hept{\begin{cases}a=a+b+c\left(1\right)\\b=ab+bc+ac\left(2\right)\\c=abc\left(3\right)\end{cases}}\)
(3) <=> abc-c=0 <=> c(ab-1)=0
+) TH1 c=0
\(\hept{\begin{cases}b=0\\b=ab\end{cases}}\)
Như vậy với trường hợp này: b=c=0 , với mọi a
TH2: ab-1 =0 <=> ab=1 => a, b khác 0 => c khác 0
\(\hept{\begin{cases}b+c=0\\b=1+bc+ac\end{cases}}\Leftrightarrow\hept{\begin{cases}b=-c\\-c=1-c^2-ab\end{cases}\Leftrightarrow}\hept{\begin{cases}b=-c\\c^2-c=0\end{cases}}\Leftrightarrow c=1,b=-1,a=-1\)
Do đó trường hợp này a=-1, b=-1, c=1
Kết luận;...