Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét vế phải : \(\frac{a}{x+1}+\frac{b}{x-2}+\frac{c}{\left(x-2\right)^2}=\frac{a\left(x-2\right)^2}{\left(x+1\right)\left(x-2\right)^2}+\frac{b\left(x-2\right)\left(x+1\right)}{\left(x+1\right)\left(x-2\right)^2}+\frac{c\left(x+1\right)}{\left(x+1\right)\left(x-2\right)^2}\)
\(=\frac{a\left(x^2-4x+4\right)+b\left(x^2-x-2\right)+c\left(x+1\right)}{\left(x+1\right)\left(x-2\right)^2}\)
\(=\frac{x^2\left(a+b\right)+x\left(-4a-b+c\right)+\left(4a-2b+c\right)}{\left(x+1\right)\left(x-2\right)^2}\)
So sánh với vế trái, suy ra :
\(\begin{cases}a+b=2\\-4a-b+c=-1\\4a-2b+c=1\end{cases}\). Giải ra được \(\left(a,b,c\right)=\left(\frac{4}{9};\frac{14}{9};\frac{7}{3}\right)\)