K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
25 tháng 10 2020

Do d qua A nên: \(a+b=3\Rightarrow b=3-a\)

Gọi B và C là giao điểm của d với Ox và Oy

\(\Rightarrow\left\{{}\begin{matrix}a.x_B+b=0\\a.0+b=y_C\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_B=-\frac{b}{a}=\frac{a-3}{a}\\y_C=b=3-a\end{matrix}\right.\)

\(\Rightarrow B\left(\frac{a-3}{a};0\right)\) ; \(C\left(0;3-a\right)\)

d cắt tia Ox và Oy \(\Rightarrow\left\{{}\begin{matrix}\frac{a-3}{a}>0\\3-a>0\end{matrix}\right.\) \(\Rightarrow a< 0\)

\(\Rightarrow OB=\frac{a-3}{a}\) ; \(OC=3-a\)

Gọi H là chân đường cao hạ từ O xuống d \(\Rightarrow OH=\sqrt{5}\)

Áp dụng hệ thức lượng trong tam giác vuông OBC

\(\frac{1}{OH^2}=\frac{1}{OB^2}+\frac{1}{OC^2}\Leftrightarrow\frac{1}{5}=\frac{a^2}{\left(a-3\right)^2}+\frac{1}{\left(3-a\right)^2}\)

\(\Leftrightarrow5\left(a^2+1\right)=\left(a-3\right)^2\)

\(\Leftrightarrow4a^2+6a-4=0\Rightarrow\left[{}\begin{matrix}a=\frac{1}{2}>0\left(l\right)\\a=-2\Rightarrow b=3-a=5\end{matrix}\right.\)

Pt đường thẳng: \(y=-2x+5\)

25 tháng 10 2020

từ chối hiểu

12 tháng 1 2019

Đáp án D

a: A(1;2); B(2;1)

=>\(\overrightarrow{AB}=\left(1;-1\right)\)

=>VTPT là (1;1)

Phương trình đường thẳng AB là:

1(x-1)+2(y-1)=0

=>x-1+2y-2=0

=>x+2y-3=0

b:

M(1;3); Δ: 3x+4y+10=0

Khoảng cách từ M đến Δ là:

\(d\left(M;\text{Δ}\right)=\dfrac{\left|1\cdot3+3\cdot4+10\right|}{\sqrt{3^2+4^2}}=\dfrac{\left|3+12+10\right|}{5}=5\)

 

31 tháng 5 2017

a) (E) có tiêu điểm \({F_1}\left( { - \sqrt 3 ;0} \right)\) nên \(c = \sqrt 3\).

Phương trình chính tăc của (E) có dạng

\({{{x^2}} \over {{a^2}}} + {{{y^2}} \over {{b^2}}} = 1\)

Ta có: \(M\left( {1;{{\sqrt 3 } \over 2}} \right) \in (E)\)

\(\Rightarrow {1 \over {{a^2}}} + {3 \over {4{b^2}}} = 1\ (1)\)

\({a^2} = {b^2} + {c^2} = {b^2} + 3\)

Thay vào (1) ta được :

\(\eqalign{ & {1 \over {{b^2} + 3}} + {3 \over {4{b^2}}} = 1 \cr & \Leftrightarrow 4{b^2} + 3{b^2} + 9 = 4{b^2}(b + 3) \cr}\)

\(\Leftrightarrow 4{b^4} + 5{b^2} - 9 = 0 \Leftrightarrow {b^2} = 1\)

Suy ra \({a^2} = 4\)

Ta có a = 2 ; b = 1.

Vậy (E) có bốn đỉnh là : (-2 ; 0), (2 ; 0)

(0 ; -1) và (0 ; 1).

b) Phương trình chính tắc của (E) là :

\({{{x^2}} \over 4} + {{{y^2}} \over 1} = 1\)

c) (E) có tiêu điểm thứ hai là điểm \(\left( {\sqrt 3 ;0} \right)\). Đường thẳng \(\Delta\) đi qua điểm\(\left( {\sqrt 3 ;0} \right)\) và vuông góc với Ox có phương trình \(x = \sqrt 3\).

Phương trình tung độ giao điểm của \(\Delta\)\((E)\) là :

\({3 \over 4} + {{{y^2}} \over 1} = 1 \Leftrightarrow {y^2} = \pm {1 \over 2}\)

Suy ra tọa độ của C và D là :

\(C\left( {\sqrt 3 ; - {1 \over 2}} \right)\)\(\left( {\sqrt 3 ;{1 \over 2}} \right)\)

Vậy CD = 1.