K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
27 tháng 12 2019

Lời giải:

Ta có:

\(A=x^3-5bx+2a=x(x^2+4x+4)-4x^2-4x-5bx+2a\)

\(=x(x^2+4x+4)-4(x^2+4x+4)+16x+16-4x-5bx+2a\)

\(=(x-4)(x^2+4x+4)+(12-5b)x+(16+2a)\)

\(=(x-4)B+(12-5b)x+(16+2a)\)

Từ đây suy ra $A$ chia cho $B$ có dư $(12-5b)x+(16+2a)$

Để đây là phép chia hết thì đa thức dư phải bằng $0$ với mọi $x$

\(\Rightarrow \left\{\begin{matrix} 12-5b=0\\ 16+2a=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} b=\frac{12}{5}\\ a=-8\end{matrix}\right. \)

Vậy.......

16 tháng 8 2016

\(f\left(x\right)=\left(x^2-x+b\right)\left(6x^2+dx+e\right)\)
\(\Rightarrow6x^4-7x^3+ax^2+3x+2=6x^4+x^3\left(d-6\right)+x^2\left(6b-d+e\right)+x\left(bd-e\right)+eb\)
đồng nhất thưc 2 vế ta được \(\hept{\begin{cases}-7=d-6\\a=6b-d+e\\3=bd-e\end{cases};2=eb}\)\(\Rightarrow\hept{\begin{cases}d=-1\\a=6b+e+1\\-3=b+e\end{cases};be=2}\)
\(\Rightarrow\hept{\begin{cases}b=-2\\e=-1\end{cases}}\) hoặc \(\hept{\begin{cases}b=-1\\e=-2\end{cases}}\)
+> \(\hept{\begin{cases}b=-2\\e=-1\end{cases}}\Rightarrow a=-12\)
+>\(\hept{\begin{cases}b=-1\\e=-2\end{cases}\Rightarrow a=-7}\)
Vậy \(\left(a,b\right)\in\left\{\left(-12;-2\right);\left(-7;-1\right)\right\}\)

16 tháng 8 2016

Biết chết liền

29 tháng 11 2015

\(x^2-2x-3=\left(x+1\right)\left(x-3\right)\)nên x = -1 và x = 3 là nghiệm của x2 - 2x - 3.

Để đa thức 4x4 - 11x3 - 2ax2 + 5bx - 6 chia hết cho đa thức x2 - 2x - 3 thì -1 và 3 cũng là nghiệm của 4x4 - 11x3 - 2ax2 + 5bx - 6

Khi đó ta có: \(4.\left(-1\right)^4-11.\left(-1\right)^3-2.\left(-1\right)^2a+5.\left(-1\right)b-6=0\)

và \(4.3^4-11.3^3-2.3^2a+5.3b-6=0\). Suy ra: 2a + 5b = 9 và 18a - 15b = 21. Giải hệ phương trình này ta tìm được 

a = 2  và  b = 1

 

19 tháng 1 2017

Giao luu vấn đề mới

x=1, -2 là nghiệm

\(\hept{\begin{cases}a-\left(a+1\right)-\left(2b+1\right)+3b=0\\-8a-2\left(a+1\right)+2\left(2b+1\right)+3b=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}b=2\\-10a+7b=0\Rightarrow a=\frac{14}{10}=\frac{7}{5}\end{cases}}\)

29 tháng 6 2017

bn đặt tính chia đa thức, tìm ra số dư rồi cho số dư = 0 là tìm được m

29 tháng 6 2017

mk dùng Bezout nha

a) Để x2-2x2+x+m chia hết cho x-2 thì x2-2x2+x+m = 0 tại x=2

=> 22-2.22+2+m = 0

=> m = 2

b) Để x3-3x+m+1 chia hết cho 2x-3 thì x3-3x+m+1 = 0 tại x = 3/2

Tìm đc m=1/8

29 tháng 6 2017

Mk năm nay lên lớp 9 nên chỉ làm bài 1 đc thôi

Câu 1:

a)\(\left(2x+3\right)^2-\left(x+1\right)^2=0\)

    \(\left(2x+3+x+1\right)\left(2x+3-x-1\right)=0\)

       \(\left(3x+4\right)\left(x+2\right)=0\)

             \(\Rightarrow\orbr{\begin{cases}3x+4=0\\x+2=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=-\frac{4}{3}\\x=-2\end{cases}}\)

b)\(x^2-6x+5=0\)

   \(x^2-5x-x+5=0\)

   \(\left(x-5\right)\left(x+1\right)=0\)

           \(\Rightarrow\orbr{\begin{cases}x-5=0\\x+1=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=5\\x=-1\end{cases}}\)

c)\(3x^2-5x+2=0\)

    \(3x^2-3x-2x+2=0\)

     \(\left(3x-2\right)\left(x-1\right)=0\)

               \(\Rightarrow\orbr{\begin{cases}3x-2=0\\x-1=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{2}{3}\\x=1\end{cases}}\)