Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giả sử \(x^4+ax+b=\left(x^2-4\right)\left(x^2+mx+n\right)\)
\(=x^4+mx^3+nx^2-4x^2-4mx-4n\)
\(=x^4+mx^3+\left(n-4\right)x^2-4mx-4n\)
Đồng nhất hệ số hai vế suy ra m = 0; n = 4; -4m = a; -4n = b
Suy ra a = 0;b=-16
Vậy \(x^4+ax+b=x^4-16\)
Đặt f(x)=\(\left(x^2+ax+b\right)\left(x^2+mx+n\right)\)
\(\Leftrightarrow\hept{\begin{cases}a=\sqrt{2}\\b=1\end{cases}}\)hoặc \(\hept{\begin{cases}a=-\sqrt{2}\\b=1\end{cases}}\)
Vì f(x)=(x-1)(x+2) nên 1 và -2 là nghiệm của f(x)
Nghiệm của f(x) cũng là nghiệm của g(x) nên g(1)=0 và g(-2)=0
Ta có: g(1)=0=1+a+b+2
\(\Rightarrow a+b=-3\)
g(-2)=0=(-8)+4a-2b+2
\(\Rightarrow4a-2b=6\)
Ta có : \(\hept{\begin{cases}2a+2b=-6\\4a-2b=6\end{cases}}\)
\(\Rightarrow6a=0\)
\(\Rightarrow\hept{\begin{cases}a=0\\b=-3\end{cases}}\)
Ta có: \(f\left(x\right)=\left(x-1\right)\left(x+2\right)\Leftrightarrow n^0\in\left\{1;-2\right\}\)
Vì nghiệm của f(x) cũng là nghiệm của g(x) nên ta có:
+ Nếu x = 1: \(a+b+3=0\Leftrightarrow a+b=-3\Rightarrow2a+2b=-6\)
+ Nếu x = -2: \(4a-2b-6=0\Leftrightarrow4a-2b=6\)
Cộng vế 2 đẳng thức trên ta được:
\(2a+2b+4a-2b=-6+6\)
\(\Leftrightarrow6a=0\Rightarrow a=0\)
\(\Rightarrow b=-3\)
Vậy \(\hept{\begin{cases}a=0\\b=-3\end{cases}}\)
f(x)=0
<=>(x-1)(x+2)=0
<=>x-1=0 hoặc x+2=0
<=>x=1 hoặc x=-2
tiếp theo thay vô làm
\(x^4+ax^2+b⋮x^2-x+1\)
=>\(x^4-x^3+x^2+x^3-x^2+x+ax^2-ax+a+x\left(a-1\right)-a+b⋮x^2-x+1\)
=>\(\left\{{}\begin{matrix}a-1=0\\-a+b=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}a=1\\b=a=1\end{matrix}\right.\)