\(x^2+2x+3-a^2=x^2+(6-2a)x+1-a\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 6 2017

Đề này phải là tìm a sao cho cái đó đúng với mọi x thì mới được. Vì nếu không có câu này thì đây sẽ biểu diễn thành hàm số phụ thuộc lẫn nhau hay tìm được vô số a. T sửa đề lại là cái đó đúng với mọi x.

Đồng nhất thức 2 vế ta được:

\(\left\{{}\begin{matrix}6-2a=2\\1-a=3-a^2\end{matrix}\right.\)

\(\Rightarrow a=2\)

tui mò ra a=2 nè nhưng xin cách cụ thể, tks

11 tháng 6 2018

Bạn làm bài kiểm tra hả sao nhiều bài tek. Mk làm mất khá nhiều tg luôn đó Ôn tập cuối năm phần số họcÔn tập cuối năm phần số họcÔn tập cuối năm phần số họcÔn tập cuối năm phần số học

11 tháng 6 2018

Có một số câu thì mình không làm được. Mong bạn thông cảm!!!

Ôn tập cuối năm phần số họcÔn tập cuối năm phần số học

19 tháng 7 2017

Bài 2:
Ta có: \(f\left(a\right)=6a^5-10a^4-5a^3+23a^2-29a+2005\)

\(=\left(6a^5-10a^4-2a^3\right)-\left(3a^3-5a^2-a\right)+\left(18a^2-30a-6\right)+2011\)

\(=2a^3\left(3a^2-5a-1\right)-a\left(3a^2-5a-1\right)+6\left(3a^2-5a-1\right)+2011\)

\(=\left(2a^3-a+6\right)\left(3a^2-5a-1\right)+2011\)

\(3a^2-5a-1=0\)

\(\Rightarrow f\left(a\right)=2011\)

Vậy...

AH
Akai Haruma
Giáo viên
30 tháng 9 2020

e)

$x^3+6x^2+12x+8=x^3+3.2.x^2+3.2^2.x+2^3=(x+2)^3$
f)

$a^3-2a^2-ab^2+2b^2=(a^3-ab^2)-(2a^2-2b^2)$

$=a(a^2-b^2)-2(a^2-b^2)=(a^2-b^2)(a-2)=(a-b)(a+b)(a-2)$

g)

$2a^2x-2a^2-2abx+4ab-2b^2=(2a^2x-2abx)-(2a^2-4ab+2b^2)$

$=2ax(a-b)-2(a-b)^2=2(a-b)(ax-a+b)$

h)

\(x^2-2xy+y^2-25=(x-y)^2-25=(x-y)^2-5^2=(x-y+5)(x-y-5)\)

AH
Akai Haruma
Giáo viên
30 tháng 9 2020

a)

$4x^2-40x^4+100x^3=4x^2(1-10x^2+25x)$

b)

\(3xy(x-5)-7x+35=3xy(x-5)-7(x-5)\)

\(=(x-5)(3xy-7)\)

c)

\(a^2-am-b^2-bm=(a^2-b^2)-(am+bm)=(a-b)(a+b)-m(a+b)\)

\(=(a+b)(a-b-m)\)

d)

\(x^3-4x-x^2y+4y=(x^3-x^2y)-(4x-4y)\)

\(=x^2(x-y)-4(x-y)=(x^2-4)(x-y)=(x-2)(x+2)(x-y)\)

7 tháng 2 2020

a, 8/x-8 + 11/x-11 = 9/x-9  + 10/ x-10

b, x/x-3 - x/x-5 = x/x-4 - x/x-6

c, 4/x^2-3x+2  - 3/2x^2-6x+1   +1 = 0

d, 1/x-1 + 2/ x-2  + 3/x-3  = 6/x-6

e, 2/2x+1 - 3/2x-1 = 4/4x^2-1

f, 2x/x+1 + 18/x^2+2x-3 = 2x-5 /x+3

g, 1/x-1 + 2x^2 -5/x^3 -1  = 4/ x^2 +x+1

1 tháng 12 2019

1. Ta có:

\(\frac{1}{x}+\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+...+\frac{1}{\left(x+2013\right)\left(x+2014\right)}\)

\(=\frac{1}{x}+\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+...+\frac{1}{x+2013}-\frac{1}{x+2014}\)

\(=\frac{2}{x}-\frac{1}{x+2014}\)

\(=\frac{2\left(x+2014\right)}{x\left(x+2014\right)}-\frac{x}{x\left(x+2014\right)}\)

\(=\frac{2x+4028-x}{x\left(x+2014\right)}=\frac{x+4028}{x\left(x+2014\right)}\)

1 tháng 12 2019

2a) ĐKXĐ: x \(\ne\)1 và x \(\ne\)-1

b) Ta có: A = \(\frac{x^2-2x+1}{x-1}+\frac{x^2+2x+1}{x+1}-3\)

A = \(\frac{\left(x-1\right)^2}{x-1}+\frac{\left(x+1\right)^2}{x+1}-3\)

A = \(x-1+x+1-3\)

A = \(2x-3\)

c) Với x = 3 => A = 2.3 - 3 = 3

c) Ta có: A = -2

=> 2x - 3 = -2

=> 2x = -2 + 3 = 1

=> x= 1/2

AH
Akai Haruma
Giáo viên
19 tháng 3 2020

a.

$4(x+5)(x+6)(x+10)(x+12)=3x^2$

$4[(x+5)(x+12)][(x+6)(x+10)]=3x^2$

$4(x^2+17x+60)(x^2+16x+60)=3x^2$

Đặt $x^2+16x+60=a$ thì pt trở thành:

$4(a+x)a=3x^2$

$4a^2+4ax-3x^2=0$

$4a^2-2ax+6ax-3x^2=0$

$2a(2a-x)+3x(2a-x)=0$

$(2a-x)(2a+3x)=0$

Nếu $2a-x=0\Leftrightarrow 2(x^2+16x+60)-x=0$

$\Leftrightarrow 2x^2+31x+120=0\Rightarrow x=\frac{-15}{2}$ hoặc $x=-8$

Nếu $2a+3x=0\Leftrightarrow 2(x^2+16x+60)+3x=0$

$\Leftrightarrow 2x^2+35x+120=0\Rightarrow x=\frac{-35\pm \sqrt{265}}{4}$

AH
Akai Haruma
Giáo viên
19 tháng 3 2020

b.

$(x+1)(x+2)(x+3)(x+6)=120x^2$

$[(x+1)(x+6)][(x+2)(x+3)]=120x^2$

$(x^2+7x+6)(x^2+5x+6)=120x^2$

Đặt $x^2+6=a$ thì pt trở thành:

$(a+7x)(a+5x)=120x^2$

$\Leftrightarrow a^2+12ax-85x^2=0$

$\Leftrightarrow a^2-5ax+17ax-85x^2=0$

$\Leftrightarrow a(a-5x)+17x(a-5x)=0$

$\Leftrightarrow (a-5x)(a+17x)=0$

Nếu $a-5x=0\Leftrightarrow x^2+6-5x=0$

$\Leftrightarrow (x-2)(x-3)=0\Rightarrow x=2$ hoặc $x=3$

Nếu $a+17x=0\Leftrightarrow x^2+17x+6=0$

$\Rightarrow x=\frac{-17\pm \sqrt{265}}{2}$

Vậy.........

8 tháng 12 2018

\(a^2x+x=2a^2-3\)

\(x\left(a^2+1\right)=2a^2-3\)

\(x=\frac{2a^2-3}{a^2+1}\)

23 tháng 1 2017

a) đk: \(x\ne0;x\ne\pm2\)

\(A=\left(\frac{1}{x-2}-\frac{2x}{4-x^2}+\frac{1}{2+x}\right)\left(\frac{2}{x}-1\right)\)

\(=\left(\frac{x+2}{x^2-4}+\frac{2x}{x^2-4}-\frac{x+2}{x^2-4}\right)\left(\frac{2-x}{x}\right)\)

\(=\frac{2x}{x^2-4}\cdot\frac{2-x}{x}=-\frac{2}{x+2}\)

b) \(2x^2+x=0\Leftrightarrow x\left(2x+1\right)=0\Leftrightarrow\left[\begin{matrix}x=0\left(loại\right)\\x=-\frac{1}{2}\end{matrix}\right.\)

\(A\left(-\frac{1}{2}\right)=-\frac{2}{2-\frac{1}{2}}=-\frac{4}{3}\)