Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\text{(x-a)(x-b)(x-c)}=\left(x^2-ax-bx+ab\right)\left(x-c\right)\)
\(=x^3-x^2c-ax^2+acx-bx^2+bcx+abx-abc\)
\(=x^3-\left(c+a+b\right)x^2+\left(ac+bc+ab\right)x-abc\)
+)a+b+c=a
=>b+c=0
+)ac+bc+ab=b
+)abc=c
=>ab=1
=>a=-1;b=-1;c=1
Ta có:
\(x^3-ax^2+bx-c=\left(x-a\right)\left(x-b\right)\left(x-c\right)\)
\(x^3-ax^2+bx-c=x^3-x^2.\left(a+b+c\right)+x.\left(ab+bc+ac\right)-abc\) (bước này thì bn cứ phá ngoặc vế phải ra thôi, mk lm tắt)
đồng nhất hệ thức => a = a+b+c; b = ab + bc + ac; c = abc
a = a + b + c => b + c = 0 => c = -b
c = abc => ab = 1 => a = 1/b; a,b khác 0 (1)
=> b = ab + bc + ac = 1/b.b + b. (-b) + 1/b. (-b) = -b^2
=> b^2 + b = 0 => b.(b+1) = 0
mà b khác 0 (từ (1) ) => b + 1 = 0 => b = -1
=> a = -1; c = 1
Câu hỏi của ankamar - Toán lớp 8 - Học toán với OnlineMath
Ta có: \(\left(ax^2+bx+c\right)\left(x+3\right)=x\left(ax^2+bx+c\right)+3\left(ax^2+bx+c\right)\)
\(=ax^3+bx^2+cx+3ax^2+3bx+3c\)
\(=ax^3+\left(3a+b\right)x^2+\left(3b+c\right)x+3c\)
Theo bài ra ta có:
\(ax^3+\left(3a+b\right)x^2+\left(3b+c\right)x+3x=x^3+2x^2-3x\)
Đồng nhất hai vế của phương trình trên ta được:\(\left\{{}\begin{matrix}a=1\\3a+b=2\\3b+c=-3\\3c=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=-1\\c=0\end{matrix}\right.\) Vậy a = 1, b = -1, c = 0
Đầu tiên ta chứng minh: \(\left|a\right|\le1,\left|b\right|\le1,\left|c\right|\le1\)Lời giải em tham khảo tại đây http://olm.vn/hoi-dap/question/709608.html.
Phần chứng minh |a|< 1 phải chọn c khéo chút xíu.
Do \(\left|f\left(x\right)\right|\ge7\) nên \(\left|4a+2b+c\right|\ge7\).
Mà \(\left|4a+2b+c\right|\le\left|4a\right|+\left|2b\right|+\left|c\right|\le7.\)
Dấu bằng xảy ra khi a = b = c = 1.
Để \(f\left(x\right)⋮g\left(x\right)\)thì \(f\left(x\right)=g\left(x\right)\cdot q\)( với q là hằng số )
Khi đó ta có pt :
\(x^5-2x^4-6x^3+ax^2+bx+c=\left(x^2-1\right)\left(x-3\right)\cdot q\)
\(\Leftrightarrow x^5-2x^4-6x^3+ax^2+bx+c=\left(x-1\right)\left(x+1\right)\left(x-3\right)\cdot q\)
Vì pt trên đúng với mọi x nên :
+) đặt \(x=1\)
\(pt\Leftrightarrow1^5-2\cdot1^4-6\cdot1^3+a\cdot1^2+b\cdot1+c=\left(1-1\right)\left(1+1\right)\left(1-3\right)\cdot q\)
\(\Leftrightarrow-7+a+b+c=0\)
\(\Leftrightarrow a+b+c=7\)(1)
Chứng minh tương tự, lần lượt đặt \(x=-1\)và \(x=3\)ta có các pt :
\(\hept{\begin{cases}3+a-b+c=0\\-81+9a+3b+c=0\end{cases}\Leftrightarrow\hept{\begin{cases}a-b+c=-3\\9a+3b+c=81\end{cases}}}\)(2)
Từ (1) và (2) ta có hệ pt 3 ẩn :
\(\hept{\begin{cases}a+b+c=7\\a-b+c=-3\\9a+3b+c=81\end{cases}}\)
Giải hệ ta được \(\hept{\begin{cases}a=8\\b=5\\c=-6\end{cases}}\)
Vậy....
â) viết lại biểu thức bên trái = (x2+5x-3)(x2-2x-4)+(14+a)x+b-12
Để là phép chia hết thì số dư =0
Số dư chính là (14+a)x+b-12=0 => a+14=0 và b-12=0 <=>a=-14 và b=12
b) làm tương tự phân tích vế trái thành (x3-2x2+4)(x2+9x+18)+(a+32)x2+(b-36)x
số dư là (a+32)x2+(b-36)x=0 =>a=-32 và b=36
c) Tương tự (x2-1)4x+(a+4)x+b
số dư là (a+4)x+b =2x-3 =>a+4=2 và b=-3 <=>a=-2 và b=-3
cái trên thì bn dùng BĐT Bunhiakovshi nha
cái dưới hơi rườm tí mik ko bt lm đúng ko
\(f\left(x\right)=x\left(x+1\right)\left(x+2\right)\left(ax+b\right)\)
\(f\left(x-1\right)=\left(x-1\right)x\left(x+1\right)\left(ax-a+b\right)\)
\(\Rightarrow f\left(x\right)-f\left(x-1\right)=x\left(x+1\right)\left(x+2\right)\left(ax+b\right)-\)
\(\left(x-1\right)x\left(x+1\right)\left(ax-a+b\right)\)
\(=x\left(x+1\right)\left[\left(x+2\right)\left(ax+b\right)-\left(x-1\right)\left(ax-a+b\right)\right]\)
\(=x\left(x+1\right)[x\left(ax+b\right)+2\left(ax+b\right)-x\left(ax-a+b\right)\)
\(+\left(ax-a+b\right)]\)
\(=x\left(x+1\right)(ax^2+bx+2ax+2b-ax^2+ax\)
\(-bx+ax-a+b)\)
\(=x\left(x+1\right)\left(4ax-a+3b\right)\)
Mà theo đề \(f\left(x\right)-f\left(x-1\right)=x\left(x+1\right)\left(2x+1\right)\)
Đồng nhất hệ số là ra
Lời giải:
\(x^3-ax^2+bx-c=(x-a)(x-b)(x-c)\)
\(\Leftrightarrow x^3-ax^2+bx-c=(x^2-bx-ax+ab)(x-c)\)
\(\Leftrightarrow x^3-ax^2+bx-c=x^3-x^2(c+a+b)+x(ab+bc+ac)-abc\)
Để đẳng thức trên đúng với mọi $x$ thì:
\(\left\{\begin{matrix} c+a+b=a\\ ab+bc+ac=b\\ abc=c\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} b+c=0\\ bc+a(b+c)=b\\ c(ab-1)=0\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} b+c=0\\ bc=b\\ c(ab-1)=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} c=-b(1)\\ -b^2=b(2)\\ -b(ab-1)=0(3)\end{matrix}\right.\)
Từ $(2)\Rightarrow b=0$ hoặc $b=-1$
Nếu $b=0$ thì $c=-b=0$, $a$ là số thực tùy ý.
Nếu $b=-1$ thì $c=-b=1$. Từ $(3)\Rightarrow ab=1\Rightarrow a=\frac{1}{b}=-1$