Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=\dfrac{6}{x+1}+\dfrac{4}{x-1}-\dfrac{10}{\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{6x-6+4x+4-10}{\left(x-1\right)\left(x+1\right)}=\dfrac{10x-12}{\left(x-1\right)\left(x+1\right)}\)
b: \(=\dfrac{1}{x}-\dfrac{1}{x+2}+\dfrac{1}{x+2}-\dfrac{1}{x+4}+\dfrac{1}{x+4}-\dfrac{1}{x+6}+\dfrac{6}{x}=\dfrac{1}{x}+\dfrac{6}{x}=\dfrac{7}{x}\)
A = x6 - 2x4 + x3 + x2 - x
= x6 - x4 - x4 + x3 + x2 - x
= ( x6 - x4 ) - ( x4 - x2 ) + ( x3 - x )
= x3( x3 - x ) - x( x3 - x ) + ( x3 - x )
= ( x3 - x )( x3 - x + 1 )
= 6( 6 + 1 )
= 6.7 = 42
\(a,\left(3x+x\right)\left(x^2-9\right)-\left(x-3\right)\left(x^2+3x+9\right)\)
\(=4x\left(x^2-9\right)-x^3+27\)
\(=4x^3-36x-x^3+27\)
\(=3x^3-36x+27\)
\(\left(x+6\right)^2-2x.\left(x+6\right)+\left(x-6\right).\left(x+6\right)\)
\(=\left(x+6\right).\left(x+6-2x+x-6\right)\)
\(=\left(x+6\right).0\)
\(=0\)
\(x^3-x=6\)
\(\Rightarrow x.\left(x^2-1\right)=6\)
\(\Rightarrow x.\left(x-1\right).\left(x+1\right)=6\)
\(x^6-2x^4+x^3+x^2-x\)
\(=x^6-x^5+x^5-x^4-x^4+x^3+x^2-x\)
\(=x^5.\left(x-1\right)+x^4.\left(x-1\right)-x^3.\left(x-1\right)+x.\left(x-1\right)\)
\(=\left(x-1\right).\left(x^5+x^4-x^3+x\right)\)
\(=\left(x-1\right).[x^4.\left(x+1\right)-x.\left(x^2-1\right)]\)
\(=\left(x-1\right).\left(x+1\right).[x^4-x.\left(x-1\right)]\)
\(=\left(x-1\right).\left(x+1\right).\left(x^4-x^2+x\right)\)
\(=x.\left(x-1\right).\left(x+1\right).\left(x^3-x+1\right)\)
\(=6.\left(6+1\right)\)
\(=42\)
Vậy giá trị của biểu thức \(B=42\)khi \(x^3-x=6\)
\(\left(5x+2\right)\left(x-1\right)-3\left(x+3\right)^2-2\left(x-6\right)\left(x+6\right)\)
\(=5x^2-5x+2x-2-3\left(x^2+6x+9\right)-2\left(x^2-6^2\right)\)
\(=5x^2-3x-2-3x^2-18x-27-2x^2+72\)
\(=-21x+43\)
Ta có : \(x+\frac{1}{x}=a\Leftrightarrow x^2+\frac{1}{x^2}+2=a^2\Leftrightarrow x^2+\frac{1}{x^2}=a^2-2\)
\(\Leftrightarrow\left(x+\frac{1}{x}\right)\left(x^2+\frac{1}{x^2}\right)=a\left(a^2-2\right)\Leftrightarrow x^3+\frac{1}{x^3}+\left(x+\frac{1}{x}\right)=a\left(a^2-2\right)\)
\(\Leftrightarrow x^3+\frac{1}{x^3}=a^3-3a\Leftrightarrow\left(x^3+\frac{1}{x^3}\right)^2=\left(a^3-3a\right)^2\)
\(\Leftrightarrow x^6+\frac{1}{x^6}+2=\left(a^3-3a\right)^2\Leftrightarrow x^6+\frac{1}{x^6}=a^6-6a^4+9a^2-2\)
Ta có: (x+6)(x+6)
\(=x^2+6x+6x+36\)
\(=x^2+12x+36\)