Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 25x2 - y2 + 4y - 4
= (5x)2 - (y - 2)2
= (5x + y - 2)(5x - y + 2)
b) a2 + b2 - x2 - y2 + 2ab - 2xy
= (a2 + 2ab + b2) - (x2 + 2xy + y2)
= (a + b)2 - (x + y)2
= (a + b + x + y)(a + b - x - y)
c) 5x2(x - 1) + 10xy(x - 1) - 5y2(1 - x)
= 5x2(x - 1) + 10xy(x - 1) + 5y2(x - 1)
= (x - 1)(5x2 + 10xy + 5y2)
= 5(x - 1)(x2 + 2xy + y2)
= 5(x -1)(x + y)2
d) x5 - x4y - xy4 + y5
= x4(x - y) - y4(x - y)
= (x - y)(x4 - y4)
= (x - y)(x2 - y2)(x2 + y2) = (x - y)2(x + y)(x2 + y2)
1: =(x+y-3x)(x+y+3x)
=(-2x+y)(4x+y)
2: =(3x-1-4)(3x-1+4)
=(3x+3)(3x-5)
=3(x+1)(3x-5)
3: =(2x)^2-(x^2+1)^2
=-[(x^2+1)^2-(2x)^2]
=-(x^2+1-2x)(x^2+1+2x)
=-(x-1)^2(x+1)^2
4: =(2x+1+x-1)(2x+1-x+1)
=3x(x+2)
5: =[(x+1)^2-(x-1)^2][(x+1)^2+(x-1)^2]
=(2x^2+2)*4x
=8x(x^2+1)
6: =(5x-5y)^2-(4x+4y)^2
=(5x-5y-4x-4y)(5x-5y+4x+4y)
=(x-9y)(9x-y)
7: =(x^2+xy+y^2+xy)(x^2+xy-y^2-xy)
=(x^2+2xy+y^2)(x^2-y^2)
=(x+y)^3*(x-y)
8: =(x^2+4y^2-20-4xy+16)(x^2+4y^2-20+4xy-16)
=[(x-2y)^2-4][(x+2y)^2-36]
=(x-2y-2)(x-2y+2)(x+2y-6)(x+2y+6)
+ xét hiệu
x^5 + y^5 - (x^4.y + x.y^4)
= x^5 - x^4.y + y^5 - x.y^4
= x^4.(x - y) + y^4.(y - x)
= (x^4 - y^4).(x - y)
= (x + y)(x - y)^2.(x^2 + y^2) >= 0
-> ĐCPCM
bài 1 chắc điểm rơi x=2;y=4, cách làm tạm thời mk chưa nghĩ ra
bài 2: P=(x^2+4y^2)/(x-2y)=[x^2+(2y)^2]/(x-2y)=[(x-2y)^2+4xy]/(x-2y)=(x-2y) + 4xy/(x-2y)=(x-2y)+4/(x-2y) do xy=1
Áp dụng bđt AM-GM , ta có P >/ 4 =>minP=4
đẳng thức xảy ra khi đồng thời x-2y=2,x>2y,xy=1 ,tự giải hệ này ra nhé
bài 1: ĐKXĐ: \(x\notin\left\{2;-2\right\}\)
\(\dfrac{x}{x+2}-\dfrac{x}{x-2}\)
\(=\dfrac{x\left(x-2\right)-x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{x^2-2x-x^2-2x}{\left(x-2\right)\left(x+2\right)}=-\dfrac{4x}{x^2-4}\)
Bài 2:
1: \(x^2y^2-8-1\)
\(=x^2y^2-9\)
\(=\left(xy-3\right)\left(xy+3\right)\)
2: \(x^3y-2x^2y+xy-xy^3\)
\(=xy\cdot x^2-xy\cdot2x+xy\cdot1-xy\cdot y^2\)
\(=xy\left(x^2-2x+1-y^2\right)\)
\(=xy\left[\left(x-1\right)^2-y^2\right]\)
\(=xy\left(x-1-y\right)\left(x-1+y\right)\)
3: \(x^3-2x^2y+xy^2\)
\(=x\cdot x^2-x\cdot2xy+x\cdot y^2\)
\(=x\left(x^2-2xy+y^2\right)=x\left(x-y\right)^2\)
4: \(x^2+2x-y^2+1\)
\(=\left(x^2+2x+1\right)-y^2\)
\(=\left(x+1\right)^2-y^2\)
\(=\left(x+1+y\right)\left(x+1-y\right)\)
5: \(x^2+2x-4y^2+1\)
\(=\left(x^2+2x+1\right)-4y^2\)
\(=\left(x+1\right)^2-4y^2\)
\(=\left(x+1-2y\right)\left(x+1+2y\right)\)
6: \(x^2-6x-y^2+9\)
\(=\left(x^2-6x+9\right)-y^2\)
\(=\left(x-3\right)^2-y^2=\left(x-3-y\right)\left(x-3+y\right)\)
\(x^5+y^6-x^4y-xy^4=\left(x^5-x^4y\right)+\left(y^6-xy^4\right)=x^3\left(x^2-xy\right)+y^4\left(y^2-xy\right)\)
\(=x^3x\left(x-y\right)+y^4y\left(y-x\right)=x^4\left(x-y\right)+y^5\left(y-x\right)=x^4\left(x-y\right)-y^5\left(x-y\right)\)
\(=\left(x^4-y^5\right)\left(x-y\right)\)