K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2021

Đặt k=x/5=y/4(k\(\ne\)0)

\(\Rightarrow\)x=5k;y=4k

Thay vào: x.y=100

Ta có: 5k.4k=100

\(\Rightarrow\)20k=100

              k=100:20

              k=5

\(\Rightarrow\)x=25;y=20

2 tháng 8 2016

Ta có:

\(\frac{x}{4}=\frac{y}{5}\)và xy = 5

Đặt:

\(\frac{x}{4}=\frac{y}{5}=k\)

\(\Rightarrow x=k.4\)

\(\Rightarrow y=k.5\)

Thế vào xy = 5, ta có:

\(\left(k.4\right).\left(k.5\right)=5\)

\(\Rightarrow k^2.20=5\)\(\)

\(\Rightarrow k^2=5:20=\frac{1}{4}\)

\(\Rightarrow k=\sqrt{\frac{1}{4}}=\frac{1}{2}\)

\(\Rightarrow\frac{x}{4}=\frac{1}{2}\Rightarrow x=\frac{1}{2}.4=2\)

Vậy z = 2

3 tháng 12 2017

Ta có: xy-x+y=6

=> x(y-1)+(y-1)=6-1

=> (y-1)(x+1)=5

Vì x, y là số nguyên dương nên x+1 và y-1 là ước dương của 5

Ta có bảng sau

x+115
x04
y-151
y6

2

Mà x, y là số nguyên dương nên

(x;y)=(4;2)

3 tháng 12 2017

xy-x+y=6

<=> x(y-1)+(y-1)=5

<=> (x+1)(y-1)=5

=> x+1 và y-1 thuộc Ư(5) = {1;5}

Ta có bảng:

x+115
y-151
x04
y62
5 tháng 11 2017

\(\frac{x}{5}=\frac{y}{3}\)và x2-y2=4(x,y>0)

\(\Rightarrow\frac{x}{5}=\frac{y}{3}=\frac{x^2}{5^2}=\frac{y^2}{3^2}=\frac{x^2-y^2}{25-9}=\frac{4}{16}=\frac{1}{4}\)

Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :

\(\Rightarrow\frac{x^2}{25}=\frac{1}{4}\Rightarrow x^2=\frac{25}{4}\Rightarrow x=\frac{5}{2}\)

\(\Rightarrow\frac{y^2}{9}=\frac{1}{4}\Rightarrow y^2=\frac{9}{4}\Rightarrow y=\frac{3}{2}\)

Vậy x =\(\frac{5}{2}\)và y =\(\frac{3}{2}\)

5 tháng 11 2017

Ta có:

\(\frac{x}{3}=\frac{y}{5}\Rightarrow\frac{x^2}{3}=\frac{y^2}{5}\)

Áp dụng dãy tỉ số bằng nhau, ta có:

\(\frac{x^2}{3^2}=\frac{y^2}{5^2}=\frac{x^2-y^2}{3^2-5^2}=\frac{-4}{-16}=\frac{1}{4}\)

\(\Rightarrow\frac{x^2}{3^2}=\frac{1}{4}\Rightarrow x=\sqrt{3^2.\frac{1}{4}}=\frac{3}{2}\)

\(\frac{y^2}{5^2}=\frac{1}{4}\Rightarrow y=\sqrt{5^2.\frac{1}{4}}=\frac{5}{2}\)

24 tháng 10 2016

chào cj e là Nguyễn Ngọc Mỹ nè xl cj e ko tl đc e ms lp 6 thui 

NM
8 tháng 11 2021

1. áp dụng tính chất của dãy tỉ số bằng nhau ta có : 

\(\frac{x+2}{3}=\frac{y-7}{5}=\frac{x+y-5}{3+5}=\frac{16}{8}=2\Rightarrow\hept{\begin{cases}x+2=6\\y-7=10\end{cases}\Leftrightarrow\hept{\begin{cases}x=4\\y=17\end{cases}}}\)

2. áp dụng tính chất của dãy tỉ số bằng nhau ta có : 

\(\frac{x+5}{2}=\frac{y-2}{3}=\frac{x+5-y+2}{2-3}=\frac{-10+7}{-1}=3\Rightarrow\hept{\begin{cases}x+5=6\\y-2=9\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=11\end{cases}}\)

13 tháng 11 2016

Vì 5(y+z)=3(z+x) =>(x+z)/5=(y+z)/3=(x+z-y-z)/(5-3) = (x-y)/2 (áp dụng t/c dãy tỉ số bằng nhau) 
Do đó (x+z)/5 = (x-y)/2 ↔ (x+z)/10=(x-y)/4 (1) 
Ta lại có: 2(x+y)=3(z+x) => (x+z)/2=(x+y)/3=(x+z-x-y)/(2-3)=y-z (áp dụng t/c dãy tỉ số bằng nhau) 
Do đó (x+z)/2 = y-z ↔ (x+z)/10=(y-z)/5 (2) 
Từ (1) và (2) suy ra (x-y)/4=(y-z)/5

13 tháng 11 2016

 Cảm ơn bạn nhiều mình click rồi

1: \(\dfrac{x-1}{3}=\dfrac{y-2}{4}=\dfrac{z+7}{5}\)

mà x+y-z=8

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x-1}{3}=\dfrac{y-2}{4}=\dfrac{z+7}{5}=\dfrac{x-1+y-2-z-7}{3+4-5}=\dfrac{8-3-7}{2}=\dfrac{-2}{2}=-1\)

=>\(\left\{{}\begin{matrix}x-1=-1\cdot3=-3\\y-2=-1\cdot4=-4\\z+7=-1\cdot5=-5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=-2\\y=-2\\z=-12\end{matrix}\right.\)

2: \(\dfrac{x+1}{3}=\dfrac{y+2}{-4}=\dfrac{z-3}{5}\)

mà 3x+2y=47-42=5

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x+1}{3}=\dfrac{y+2}{-4}=\dfrac{z-3}{5}=\dfrac{3x+3+2y+4}{3\cdot3+2\left(-4\right)}=\dfrac{5+7}{9-8}=12\)

=>\(\left\{{}\begin{matrix}x+1=12\cdot3=36\\y+2=-12\cdot4=-48\\z-3=12\cdot5=60\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=35\\y=-48-2=-50\\z=60+3=63\end{matrix}\right.\)