Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
a) Theo đề ra, ta có:
\(\dfrac{x+2}{3}=\dfrac{y-7}{5}\) và \(x+y=21\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{x+2}{3}=\dfrac{y-7}{5}=\dfrac{x+2+y-7}{3+5}=\dfrac{16}{8}=2\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x+2}{3}=2\\\dfrac{y-7}{5}=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+2=6\\y-7=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=17\end{matrix}\right.\)
Vậy ...
b) Tương tự ý a)
c) Theo đề ra, ta có:
\(\dfrac{2x}{3}=\dfrac{3y}{4}=\dfrac{5z}{6}\) và \(x-y+z=41\)
\(\Leftrightarrow\dfrac{30x}{45}=\dfrac{30y}{40}=\dfrac{30z}{36}\Leftrightarrow\dfrac{x}{45}=\dfrac{y}{40}=\dfrac{z}{36}\)
Áp dụng tính chất của dãy tỉ số bằng nhau rồi tính
d) \(x:y:z=\dfrac{2}{3}:\dfrac{3}{5}:\dfrac{3}{4}\)
\(\Leftrightarrow\dfrac{x}{\dfrac{20}{60}}=\dfrac{y}{\dfrac{36}{60}}=\dfrac{z}{\dfrac{45}{60}}\Leftrightarrow\dfrac{x}{20}=\dfrac{y}{36}=\dfrac{z}{45}\)
Áp dụng tính chất của dãy tỉ số bằng nhau rồi tính.
Chúc bạn học tốt!!!
a) ADTCDTSBN
có: \(\frac{x}{2}=\frac{z}{4}=\frac{x+z}{2+4}=\frac{18}{6}=3.\)
=> x/2 = 3 => x = 6
y/3 = 3 => y = 9
z/4 = 3 => z = 12
KL:...
b,c làm tương tự nha
d) ta có: \(\frac{x}{5}=\frac{y}{-6}=\frac{z}{7}=\frac{2x}{10}\)
ADTCDTSBN
có: \(\frac{2x}{10}=\frac{y}{-6}=\frac{z}{7}=\frac{2x+y-z}{10+\left(-6\right)-7}=\frac{49}{-3}\)
=>...
e) ADTCDTSBN
có: \(\frac{x+1}{2}=\frac{y+2}{3}=\frac{z+3}{4}=\frac{x+1+y+2+z+3}{2+3+4}=\frac{\left(x+y+z\right)+\left(1+2+3\right)}{9}\)
\(=\frac{21+6}{9}=\frac{27}{9}=3\)
=>...
g) ta có: \(\frac{x}{4}=\frac{y}{3}=k\Rightarrow\hept{\begin{cases}x=4k\\y=3k\end{cases}}\)
mà xy = 12 => 4k.3k = 12
12.k2 = 12
k2 = 1
=> k = 1 hoặc k = -1
=> x = 4.1 = 4
y = 3.1 = 3
x=4.(-1) = -4
y=3.(-1) = -3
KL:...
h) ta có: \(\frac{x}{5}=\frac{y}{3}\Rightarrow\frac{x^2}{25}=\frac{y^2}{9}\)
ADTCDTSBN
có: \(\frac{x^2}{25}=\frac{y^2}{9}=\frac{x^2-y^2}{25-9}=\frac{16}{16}=1\)
=>...
1) 22x + 1 = 32
=> 22x + 1 = 25
=> 2x + 1 = 5
=> 2x = 5 - 1
=> 2x = 4
=> x = 2
(2) 3.x3 - 100 = 275
=> 3x3 = 275 + 100
=> 3x3 = 375
=> x3 = 375 : 3
=> x3 = 125
=> x3 = 53
=> x = 5
(4) (x - 1)3 - 25 = 72
=> (x - 1)3 = 49 + 32
=> (x - 1)3 = 81
(xem lại đề)
5) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{3}=\frac{y}{5}=\frac{x-y}{3-5}=\frac{-4}{-2}=2\)
=> \(\hept{\begin{cases}\frac{x}{3}=2\\\frac{y}{5}=2\end{cases}}\) => \(\hept{\begin{cases}x=2.3=6\\y=2.5=10\end{cases}}\)
Vậy ...
6) Ta có: \(\frac{x}{2}=\frac{y}{3}\) => \(\frac{x}{10}=\frac{y}{15}\)
\(\frac{y}{5}=\frac{z}{4}\) => \(\frac{y}{15}=\frac{z}{12}\)
=> \(\frac{x}{10}=\frac{y}{15}=\frac{z}{12}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{12}=\frac{x+y+z}{10+15+12}=\frac{-49}{37}\)
=> \(\hept{\begin{cases}\frac{x}{10}=-\frac{49}{37}\\\frac{y}{15}=-\frac{49}{37}\\\frac{z}{12}=-\frac{49}{37}\end{cases}}\) => \(\hept{\begin{cases}x=-\frac{49}{37}\cdot10=\frac{-490}{37}\\y=-\frac{49}{37}\cdot15=-\frac{735}{37}\\z=-\frac{49}{37}\cdot12=-\frac{588}{37}\end{cases}}\)
Vậy ...
mk lm bài mà mk cho là ''khó'' nhất thôi nha
\(\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{4}\)và \(x+y+z=-49\)
\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{10}=\frac{y}{15}\left(1\right)\)
\(\frac{y}{5}=\frac{z}{4}\Rightarrow\frac{y}{15}=\frac{z}{12}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{12}\)
ADTC dãy tỉ số bằng nhau ta có
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{12}=\frac{x+y+z}{10+15+12}=-\frac{49}{37}\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{10}=-\frac{49}{37}\\\frac{y}{15}=-\frac{49}{37}\\\frac{z}{12}=-\frac{49}{37}\end{cases}\Rightarrow\hept{\begin{cases}x=-\frac{49}{37}.10=-\frac{490}{37}\\y=-\frac{49}{37}.15=-\frac{735}{37}\\z=-\frac{49}{37}.12=-\frac{588}{37}\end{cases}}}\)
a/ Ta có \(5-\left(x+y\right)=-2\)
=> \(-\left(x+y\right)=-2-5\)
=> \(-\left(x+y\right)=-7\)
=> \(x+y=7\)(1)
và \(3\left(x-2y\right)-1=5\)
=> \(3\left(x-2y\right)=6\)
=> \(x-2y=2\)
=> \(2\left(\frac{1}{2}x-y\right)=2\)
=> \(\frac{1}{2}x-y=1\)
=> \(\frac{1}{2}x=1+y\)
=> \(x=2\left(1+y\right)\)
=> \(x=2+y\)(2)
Thế (2) vào (1)
=> \(2+y+y=7\)
=> \(2+2y=7\)
=> \(2y=5\)
=> \(y=\frac{5}{2}\)
và \(x=7-y\)
=> \(x=7-\frac{5}{2}\)
=> \(x=\frac{14-5}{2}\)
=> \(x=\frac{9}{2}\)
b/ Ta có \(5+x=3y\)
=> \(3y-x=5\)(1)
và \(2y-3=x\)
=> \(2y-x=3\)(2)
Trừ (2) với (1) => \(y=2\)
Thay y = 2 vào (1), ta có:
\(3.2-x=5\)
=> \(-x=5-6\)
=> \(-x=-1\)
=> \(x=1\)
bài 1 : a,ta có 3/x-1 =4/y-2=5/z-3 => x-1/3=y-2/4=z-3/5
áp dụng .... => x-1+y-2+z-3 / 3+4+5 = x+y+z-1-2-3/3+4+5 = 12/12=1
do x-1/3 = 1 => x-1 = 3 => x= 4 ( tìm y,z tương tự
Bài 1:
a) Ta có: 3/x - 1 = 4/y - 2 = 5/z - 3 => x - 1/3 = y - 2/4 = z - 3/5 áp dụng ... =>x - 1 + y - 2 + z - 3/3 + 4 + 5 = x + y + z - 1 - 2 - 3/3 + 4 + 5 = 12/12 = 1 do x - 1/3 = 1 => x - 1 = 3 => x = 4 ( tìm y, z tương tự )